Альтернативная энергия для дома: выбираем источник
Многие полагают, что дешевое отопление частного дома возможно только на магистральном газе. Подумаем, что делать, если его нет, и подведение не планируется, и какой может быть альтренативная энергия для дома.
- Как работает ветрогенератор.
- Как установить солнечный коллектор.
- Как обустроить тепловой насос.
- Как выбрать инвертор.
Сегодня, когда цены на энергоносители стремительно растут вверх, а стоимость подключения к трубе с «голубым топливом» неоправданно высока, всё большее число домовладельцев отказывается от традиционных энергоресурсов и обращает свой взор на альтернативные источники энергии для дома.
Опираясь на знания экспертов и опыт участников forumhouse.ru мы расскажем вам, чем можно заменить газ; как ветер, солнце и тепло земли становятся альтернативой электричеству из проводов – используя их, можно осветить и обогреть загородный дом.
Альтернативный источник электроэнергии: ловец ветра
Именно так можно назвать ветрогенератор. Люди с давних пор используют силу ветра в качестве источника альтернативной энергии.
Пройдя долгий путь, знакомые всем ветряные мельницы превратились в современные ветроэнергетические установки способные вырабатывать электроэнергию.
По какому принципу работает ветрогенератор
Всё довольно просто. Поток ветра вращает лопасти ветроколеса, заставляя таким образом вращаться вал электрогенератора.
Генератор в свою очередь вырабатывает электрический ток.
Следует помнить, что генератор выдает непостоянное напряжение с различной частотой. На случай отсутствия ветра в комплект ветроэнергетической системы входит блок аккумуляторных батарей, куда и поступает выработанная генератором электроэнергия.
Среди индивидуальных домовладельцев наиболее широкое распространение получили ветроэнергетические установки мощностью до 10 кВт. Имеются три основных типа конструкции ветродвигателей:
- Малолопастные. Чаще всего имеют три лопасти. Отличаются высоким КПД и простотой конструкции. Недостатки: из-за малой площади лопастей, начальный запуск двигателя требует скорости ветра не менее 5-5 м/с. Также пользователи отмечают высокий уровень шума.
- Многолопастные. На ветровое колесо монтируется от 18 до 24 выгнутые лопасти. Начинают работать при скорости ветра в 2-4 м/с. Отличаются низким уровнем шума, но и более низким КПД, чем малолопастные ветродвигатели. Недостатки: усложненность конструкции, которая мешает установить ветрогенератор своими руками, и возникающий при их работе гироскопический эффект.
- Роторные ветродвигатели – имеют вертикально расположенные лопасти, которые двигаются не по прямой, а по кругу. Достоинства: стабильная работа при постоянном ветре, низкий уровень шума. Существенный недостаток подобной конструкции ветродвигателя низкий КПД, не более 18 %.
Посмотрим, как же сделать ветроэнергетическую установку эффективной в наших условиях.
Интересен личный опыт участника forumhouse.ru Александра Капустина (ник на форуме Бывалый 1406)
– Размещать ветрогенератор следует на площадке, где для ветров существует как можно меньше помех. Энергия ветра – это кубическая функция скорости ветра. Это означает, что незначительные изменения скорости ветра вызывают существенные изменения выходной мощности. В целях безопасности ставить ветряк желательно дальше от жилых построек. О высоте мачты – ставим как можно выше.
В условиях поселков под Москвой можно рекомендовать высоту мачты не менее 15 метров. А при самостоятельном расчёте системы альтернативного энергоснабжения частного дома сначала необходимо выяснить, какое количество энергии требуется от системы. Для этого придётся определить пиковую мгновенную мощность, а также рассчитать две величины ожидаемого суточного энергопотребления — его максимальное и среднее значения.
Следует помнить, что в наших климатических условиях ветряки могут работать на полную мощность примерно 20–30% дней в году, поэтому ветрогенератор следует рассматривать как дополнительную, резервную систему электроснабжения по выработке электроэнергии для питания бытовых электроприборов.
Ловцы солнца
Как можно использовать энергию солнца: первое, что приходит в голову – солнечная батарея.
Уже никого не удивить фотоэлементами, размещенными на крыше коттеджа.
Но речь в нашем материале пойдёт не о них, а об устройстве способном преобразовывать солнечную энергию в тепло пригодное ля отопления или горячего водоснабжения дома.
Солнечные коллекторы
За ответом на вопрос, что такое солнечный коллектор, обратимся за разъяснениями к заместителю технического директора компании «АкваБур» Евгению Касаткину.
– В основу гелиосистемы или, проще говоря, солнечного коллектора заложен принцип получения тепла от солнечного излучения и дальнейшей передачей накопленной энергии в систему ГВС или отопления.
Существуют два вида солнечных коллекторов:
- Вакуумный солнечный коллектор. Съем потенциала в данной системе производиться с помощью вакуумных трубок. Вакуумная трубка – это колба с двойным стеклом с выкаченным из неё воздухом. С внутренней стороны колба покрыта отражающим материалом, который впускает солнечное излучение, но не выпускает наружу. А во внутренней части системы, находятся трубки со стержнем, в котором находиться теплоноситель. Вакуумная прослойка даёт возможность сохранить около 95% улавливаемой тепловой энергии.
- Плоский солнечный коллектор. Съем потенциала в данной системе основан на поглощении солнечного излучения абсорбирующей пластиной, после чего энергия, в виде накопленного тепла передаётся жидкому носителю. Обратная сторона солнечного коллектора покрывается теплоизоляцией.
Какую систему выбрать с учётом работы в наших условиях
По мнению руководителя направления отдела развития компании «Виссманн» Михаила Мурашко:
– При пасмурной погоде, смоге и рассеянном излучении наиболее эффективно работают трубчатые вакуумные коллекторы. А плоские солнечные коллекторы, более оптимальны для использования в районах с высокой солнечной инсоляцией.
Евгений Касаткин:
– В зимний период и в северных районах солнечный коллектор может использоваться как дополнительная система, подключённая к системе отопления или ГВС. Но наилучшие показатели мы получим летом, когда система при правильной её установке и монтаже, может полностью удовлетворить вашу потребность в горячей воде, без использования косвенных систем нагрева воды.
Установка солнечного коллектора позволит вам получить практически бесплатное тепло. Если системе необходима принудительная циркуляция теплоносителя, то электричество потребуется лишь для работы насоса. А в солнечный день, гелиосистема может нагреть воду до температуры 50-70 С.
Тепловые насосы
Как гласит закон сохранения энергии: «Энергия не может возникнуть из ничего и не может просто так исчезнуть, она может только переходить из одной формы в другую».
В земле, воздухе и воде содержится большое количество низкопотенциальной тепловой энергии которую можно использовать для отопления дома. Остаётся только собрать эту рассеянную тепловую энергию и «запустить» её в систему теплоснабжения дома. Для этого применяется специальное устройство – тепловой насос.
В чем заключается эта технология, объясняет директор компании «SagaTherm» Александр Сагалович:
– Тепловой насос – это холодильная машина.В обычных условиях тепловая энергия передается от более нагретого тела к менее нагретому. Тепловой насос может забирать тепловую энергию у менее нагретого тела и передавать его более нагретому, нагревая его еще сильнее.
Тепловой насос способен отбирать тепловую энергию из следующих источников – воздуха, воды и земли. В наших условиях наиболее целесообразно построить систему тепловых насосов, базирующуюся на отборе тепла земли и воды.
Для перекачивания 4 кВт тепловой энергии нам понадобится примерно 1 кВт электроэнергии. Но электроэнергия тоже никуда просто так не пропадет, она превратится в тепловую энергию, т.к. компрессор в процессе работы также нагревается. Итого – затратив 1 кВт электроэнергии, мы получаем 5 кВт тепла.
Какую выгоду даёт установка этого устройства
Евгений Касаткин:
– Выгоду от использования тепловых насосов лучше всего демонстрирует следующая таблица.
Теперь мы знаем, как работает тепловой насос. Рассмотрим, какие бывают типы систем.
Выбор конструкции будет зависеть от наличия на вашем участке дополнительных свободных площадей или водоёма.
- Вертикальная система. Применяется, если на участке нет места для закладки контура труб или отсутствуют незамерзающие зимой водоёмы. Для монтажа теплового насоса бурятся от 3 до 5 скважин, глубиной от 50 до 150 метров.
- Горизонтальная система. Менее затратна, чем вертикальная система, т.к. отпадает необходимость в бурении дорогих скважин. Контур труб закладывается на небольшой глубине, обычно около 1.5 метров, но требуется довольно приличная площадь участка.
- Водная система. Если возле участка, не далее чем 100 метров, есть незамерзающий в зимнее время водоём, то закладка контура труб в нём будет наиболее разумным выбором.
Особенности эксплуатации тепловых насосов
Как и любая инженерная система, отопление и горячее водоснабжение на базе теплового насоса требует очень вдумчивого подхода.
Александр Сагалович:
– Вертикальная и горизонтальная системы обустройства грунтового теплообменника одинаково эффективны. Горизонтальный теплообменник занимает много места, но значительно дешевле вертикального.
Бурение скважин обойдётся дороже, но зато можно сэкономить место на участке.
Для многих это единственное решение, т.к. участок не позволяет разместить горизонтальный теплообменник.
При обустройстве горизонтального грунтового теплообменника понадобится примерно 5 соток земли на каждые 10 кВт мощности. После завершения работ, эту землю можно использовать без ограничений, единственное, на ней нельзя будет строить капитальные строения. Одним из способов использования тепловых насосов в качестве отопительного контура, может стать монтаж системы водяного тёплого пола.
Инвертор – как часть системы источника альтернативной энергии
Как уже говорилось выше, выработанное источником альтернативной энергии электричество накапливается в аккумуляторах. Но что делать дальше с этой энергией, ведь аккумуляторные батареи выдают постоянный ток, непригодный для подключения бытовых электроприборов? На помощь приходит преобразователь тока – инвертор. При помощи данного прибора постоянный ток преобразовывается в переменный.
Об особенностях использования инверторов для создания систем автономного и бесперебойного электропитания, рассказывает главный инженер компании «СибКонтакт» Сергей Лесков:
– Инверторы встраиваются в различные системы по производству альтернативной энергии содержащие аккумулятор, тем самым обеспечивая весь дом электроэнергией с напряжением 220В и частотой 50 Гц. Инверторы с синусоидальной формой выходного напряжения являются обязательной частью установки автономного электропитания, так как к ним можно подключить любое, даже самое чувствительное оборудование.
При создании системы автономного и бесперебойного электропитания инверторы имеют ряд преимуществ по сравнению с дизель и бензогенераторами:
- Эти элементы системы работают в автономном режиме и не требуют присутствия человека;
- В режиме холостого хода потребляют минимум электроэнергии;
- Не требуют специальной вытяжной вентиляции помещения;
- Не требуют звукоизоляции помещения.
Таким образом, выбор эффективного источника альтернативной энергии для загородного дома, заключается в комплексном подходе к решению множества достаточно сложных задач, требующих знаний, опыта и умелых рук.
Узнать больше об альтернативной энергии в частном доме вы можете из соответствующей ветки форума. В нашей теме раскрывается вопрос использования ветрогенератора и о том, можно ли собрать его своими руками для энергоснабжения альтернативного дома.
Поучаствуйте в обсуждении нескольких вариантов применения тепловых насосов. Ознакомившись с видео на нашем сайте, вы увидите, как геотермальный насос обеспечивает теплом дом в случае отсутствия магистрального газа. А в этом разделе форума ведётся обсуждение инверторов.
Альтернативная энергетика для дома своими руками: обзор лучших эко-технологий
Запасы природного топлива не безграничны, а цены на энергоносители постоянно растут. Согласитесь, было бы неплохо взамен традиционных источников энергии использовать альтернативные, чтобы не зависеть от поставщиков газа и электроэнергии в своем регионе. Но вы не знаете, с чего начинать?
Мы поможем вам разобраться с основными источниками возобновляемой энергии – в этом материале мы рассмотрели лучшие эко-технологии. Заменить привычные источники питания способна альтернативная энергия: своими руками можно устроить весьма эффективную установку для ее получения.
В нашей статье рассмотрены простые способы сборки теплового насоса, ветрогенератора и солнечных батарей, подобраны фотоиллюстрации отдельных этапов процесса. Для наглядности материал снабжен видеороликами по изготовлению экологически чистых установок.
Популярные источники возобновляемой энергии
“Зеленые технологии” позволят ощутимо сократить бытовые расходы за счет использования практически бесплатных источников.
Еще с древних времен люди использовали в повседневном обиходе механизмы и устройства, действие которых было направлено на превращение в механическую энергию сил природы. Ярким примером тому являются водяные мельницы и ветряки.
С появлением электричества наличие генератора позволило механическую энергию превращать в электрическую.
Сегодня значительное количество энергии вырабатывается именно ветряными комплексами и гидроэлектростанциями. Помимо ветра и воды людям доступны такие источники, как биотопливо, энергия земных недр, солнечный свет, энергия гейзеров и вулканов, сила приливов и отливов.
В быту для получения возобновляемой энергии широко используют следующие устройства:
Высокая стоимость, как самих устройств, так и проведения монтажных работ, останавливает многих людей на пути к получению вроде бы бесплатной энергии.
Окупаемость может достигать 15-20 лет, но это не повод лишать себя экономических перспектив. Все эти устройства можно изготовить и установить самостоятельно.
Солнечные панели собственноручного изготовления
Готовая солнечная панель стоит немалых денег, поэтому ее покупка и установка по карману далеко не каждому. При самостоятельном изготовлении панели расходы можно снизить в 3-4 раза.
Прежде чем приступить к устройству солнечной панели нужно разобраться, как все это работает.
Принцип работы системы солнечного электроснабжения
Понимание назначения каждого из элементов системы позволит представить ее работу в целом.
Основные составляющие любой системы солнечного электроснабжения:
- Солнечная панель. Это комплекс соединенных в единое целое элементов, преобразующих солнечный свет в поток электронов.
- Аккумуляторы. Одной аккумуляторнойбатареинадолго не хватит, поэтому система может насчитывать до десятка таких устройств. Количество аккумуляторных батарей определяется мощностью потребляемой электроэнергии. Количество аккумуляторных батарей можно будет увеличить в будущем, добавив в систему необходимое количество солнечных панелей;
- Контроллер солнечного заряда. Это устройство необходимо для обеспечения нормальной зарядки аккумуляторной батареи. Основное его назначение состоит в недопущении повторной перезарядки батареи.
- Инвертор. Прибор, требующийся для преобразования тока. Аккумуляторные батареи выдают ток низкого напряжения, а инвертор преобразует его в ток необходимого для функционала высокого напряжения – выходная мощность. Для дома достаточно будет инвертора с выдаваемой мощностью 3-5 кВт.
Основная особенность солнечных батарей состоит в том, что они не могут вырабатывать ток высокого напряжения. Отдельный элемент системы способен вырабатывать ток напряжением 0,5-0,55 В. Одна солнечная батарея способна вырабатывать ток напряжением 18-21 В, чего достаточно для зарядки 12-вольтового аккумулятора.
Если инвертор, аккумуляторные батареи и контроллер заряда лучше приобрести готовыми, то солнечные батареи вполне возможно сделать самому.
Изготовление солнечной батареи
Для изготовления батареи необходимо приобрести солнечные фотоэлементы на моно- либо поликристаллах. При этом нужно учесть, что срок службы поликристаллов значительно меньше, чем у монокристаллов.
Кроме того КПД поликристаллов не превышает 12%, тогда как этот показатель у монокристаллов достигает 25%. Для того, чтобы сделать одну солнечную панель необходимо купить как минимум 36 таких элементов.
Шаг #1 – сборка корпуса солнечной панели
Начинаются работы с изготовления корпуса, для этого потребуются следующие материалы:
Из фанеры необходимо вырезать днище корпуса и вставить его в рамку из брусков толщиной 25 мм. Размер днища определяется количеством солнечных фотоэлементов и их размером.
По всему периметру рамки в брусках с шагом 0,15-0,2 м необходимо высверлить отверстия диаметром 8-10 мм. Они требуются для предотвращения перегрева элементов батареи во время работы.
Шаг #2 – соединение элементов солнечной панели
По размеру корпуса необходимо при помощи канцелярского ножа вырезать из ДВП подложку для солнечных элементов. При ее устройстве также нужно предусмотреть наличие вентиляционных отверстий, устраиваемых через каждые 5 см квадратно-гнездовым способом. Готовый корпус нужно дважды покрасить и высушить.
Солнечные элементы следует вверх ногами выложить на подложку из ДВП и выполнить распайку. Если готовые изделия уже не были оснащены припаянными проводниками, то работа существенно упрощается. Однако процесс распайки предстоит выполнить в любом случае.
Нужно помнить, что соединение элементов должно быть последовательным. Изначально элементы следует соединять рядами, а уже потом готовые ряды объединять в комплекс путем присоединения к токоведущим шинам.
По завершению элементы нужно перевернуть, уложить как положено и зафиксировать на своих местах при помощи силикона.
После чего надо проверить величину выходного напряжения. Ориентировочно оно должно находиться в пределах 18-20 В. Теперь батарею следует обкатать в течение нескольких дней, проверить способность зарядки аккумуляторных батарей. Только после контроля работоспособности производится герметизация стыков.
Шаг #3 – сборка системы электроснабжения
Убедившись в безукоризненном функционале, можно выполнить сборку системы электроснабжения. Входные и выходные контактные провода нужно вывести наружу для последующего подключения прибора.
Из оргстекла следует вырезать крышку и закрепить ее саморезами к бортикам корпуса через предварительно просверленные отверстия.
Вместо солнечных элементов для изготовления батареи можно использовать диодную цепь с диодами Д223Б. Панель из 36 последовательно соединенных диодов способна выдавать напряжение 12 В.
Диоды нужно предварительно замочить в ацетоне для удаления краски. В пластиковой панели следует высверлить отверстия, вставить диоды и произвести их распайку. Готовую панель необходимо поместить в прозрачный кожух и герметизировать.
Основные правила установки солнечной панели
От правильности установки солнечной батареи во многом зависит эффективность работы всей системы.
При установке нужно учесть следующие важные параметры:
- Затенение. Если батарея будет находиться в тени деревьев или более высоких сооружений, то она не только не будет нормально функционировать, но и может выйти из строя.
- Ориентация. Для максимального попадания солнечных лучей на фотоэлементы батарею необходимо направить в сторону солнца. Если Вы живете в северном полушарии, то панель должна быть ориентирована на юг, если же в южном, то наоборот.
- Наклон. Этот параметр определяется географическим положением. Специалисты рекомендуют устанавливать панель под углом, равным географической широте.
- Доступность. Нужно постоянно следить за чистотой лицевой стороны и вовремя удалять слой пыли и грязи. А в зимнее время панель периодически необходимо очищать от налипающего снега.
Желательно, чтобы при эксплуатации солнечной панели угол наклона не был постоянным. Прибор будет работать по максимуму только в случае прямо направленных на его крышку солнечных лучей.
Летом его лучше располагать под уклоном в 30º к горизонту. В зимнее время рекомендовано приподнимать и устанавливать на 70º.
Тепловые насосы для отопления
Тепловые насосы являются одним и из наиболее прогрессивных технологических решений в получении альтернативной энергии для вашего дома. Они не только наиболее удобны, но и экологически безопасны.
Их эксплуатация позволит существенно снизить расходы, связанные с оплатой на охлаждение и обогрев помещения.
Классификация тепловых насосов
Тепловые насосы классифицирую по количеству контуров, источнику энергии и способу ее получения.
В зависимости от конечных потребностей тепловые насосы могут быть:
- Одно-, двух или трехконтурные;
- Одно- или двухконденсаторные;
- С возможностью нагрева или с возможностью нагрева и охлаждения.
По виду источника энергии и способу ее получения различают следующие тепловые насосы:
- Грунт – вода. Применяются в умеренном климатическом поясе с равномерным прогревом земли вне зависимости от времени года. Для монтажа используют коллектор либо зонд в зависимости от типа грунта. Для бурения неглубоких скважин не требуется получения разрешительных документов.
- Воздух – вода. Тепло аккумулируется из воздуха и направляется на нагрев воды. Установка будет уместной в климатических зонах с зимней температурой не ниже -15 градусов.
- Вода – вода. Монтаж обусловлен наличием водоемов (озера, реки, грунтовые воды, скважины, отстойники). Эффективность такого теплового насоса является весьма внушительной, что обусловлено высокой температурой источника в холодное время года.
- Вода – воздух. В данной связке в роли источника тепла выступают те же водоемы, но при этом тепло посредством компрессора передается непосредственно воздуху, используемому для обогрева помещений. В данном случае вода не выступает в качестве теплоносителя.
- Грунт – воздух. В данной системе проводником тепла является грунт. Тепло из грунта через компрессор передается воздуху. В роли переносчика энергии применяют незамерзающие жидкости. Данная система считается наиболее универсальной.
- Воздух – воздух. Работа данной системы сходна с работой кондиционера, способного обогревать и охлаждать помещение. Данная система является наиболее дешевой, так как не требует производства земляных работ и прокладки трубопроводов.
При выборе вида источника тепла нужно ориентироваться на геологию участка и возможность беспрепятственного проведения земляных работ, а также на наличие свободной площади.
При дефиците свободного места придется отказаться от таких источников тепла, как земля и вода и забирать тепло из воздуха.
Принцип работы теплового насоса
Принцип работы тепловых насосов основан на использовании цикла Карно, который в результате резкого сжатия теплоносителя обеспечивает повышение температуры.
По такому же принципу, но с противоположным эффектом, работает большинство климатических устройств с компрессорными установками (холодильник, морозильная камера, кондиционер).
Главный рабочий цикл, который реализуется в камерах данных агрегатов, полагает обратный эффект – в результате резкого расширения происходит сужение хладагента.
Именно поэтому один из наиболее доступных методов изготовления теплового насоса основан на использовании отдельных функциональных узлов, используемых в климатическом оборудовании.
Так, для изготовления теплового насоса может быть использован бытовой холодильник. Его испаритель и конденсатор будут играть роль теплообменников, отбирающих тепловую энергию из среды и направляющие ее непосредствен на нагрев теплоносителя, который циркулирует в системе отопления.
Сборка теплового насоса из подручных материалов
Используя старую бытовую технику, а точнее, ее отдельные узлы, можно самостоятельно собрать тепловой насос. Как это можн сделать, рассмотрим далее.
Шаг #1 – подготовка компрессора и конденсатора
Работы начинаются с подготовки компрессорной части насоса, функции которой будут отведены соответствующему узлу кондиционера либо холодильника. Данный узел необходимо закрепить с помощью мягкой подвески на одной из стен рабочего помещения там, где это будет удобно.
После этого необходимо изготовить конденсатор. Для этого идеально подойдет бак из нержавеющей стали объемом 100 л. В него необходимо вмонтировать змеевик (можно взять готовую медную трубку от старого кондиционера либо холодильника.
Подготовленный бак нужно с помощью болгарки разрезать вдоль на две равные части – это необходимо для установки и закрепления змеевика в теле будущего конденсатора.
После монтажа змеевика в одной из половинок обе части емкости нужно соединить и сварить между собой таким образом, чтобы получился замкнутый бак.
Учтите, что при сварке нужно использовать специальный электроды, а еще лучше применять аргоновую сварку, только она может обеспечить максимальное качество шва.
Шаг #2 – изготовление испарителя
Для изготовления испарителя потребуется герметичный пластиковый бак объемом 75-80 литров, в который нужно будет поместить змеевик из трубы диаметром ¾ дюйма.
На концах трубки необходимо нарезать резьбу для последующего обеспечения соединения с трубопроводом. После завершения сборки и проверки герметизации испаритель следует закрепить на стене рабочего помещения при помощи кронштейнов соответствующего размера.
Завершение сборки лучше доверить специалисту. Если часть сборки можно выполнить самостоятельно, то с пайкой медных труб и закачкой хладагента должен работать профессионал. Сборка основной части насоса заканчивается подключением обогревательных батарей и теплообменника.
Нужно отметить, что данная система является маломощной. Поэтому будет лучше, если тепловой насос станет дополнительной частью существующей системы отопления.
Шаг #3 – обустройство и подключение внешнего устройства
В качестве источника тепла лучше всего подойдет вода из колодца или скважины. Она никогда не замерзает и даже зимой ее температура редко опускается ниже +12 градусов. Потребуется устройство двух таких скважин.
Из одной скважины будет происходить забор воды с последующей подачей в испаритель.
Далее отработанная вода будет сбрасываться во вторую скважину. Остается все это подключить к входу в испаритель, к выходу и герметизировать.
В принципе, система готова к эксплуатации, но для ее полной автономности потребуется система автоматики, контролирующая температуру движущегося теплоносителя в отопительных контурах и давление фреона.
На первых порах можно обойтись обыкновенным пускателем, но следует учесть, что запуск системы после отключения компрессора можно выполнять через 8-10 минут – это время необходимо для выравнивания давления фреона в системе.
Устройство и использование ветрогенераторов
Энергию ветра использовали еще наши предки. С тех далеких времен, в принципе, ничего не изменилось.
Отличие состоит лишь в том, что жернова мельницы заменены генератором и приводом, обеспечивающими преобразование механической энергии лопастей в электрическую энергию.
Виды альтернативных источников энергии
В природе энергия присутствует практически везде – ветер, вода, земля и солнце – это альтернативные и возобновляемые источники энергии. Но основной задачей человечества является создание приспособлений, которые могут извлечь ее оттуда, именно этим занимается альтернативная энергетика.
Человечество достигло невероятных успехов в этом направлении, на сегодняшний день такие установки можно изготовить самостоятельно для своего дома. Зачем нужны эти устройства, и что можно изготовить своими руками?
Необходимость использования новых источников энергии
Развитие энергетики и технологический прогресс привели к постоянному росту спроса на энергоресурсы. До 60-х годов прошлого века основным источником энергетики являлась нефть. Кризис 1973 года показал, что ориентация на один вид ресурса может повлечь за собой непредвиденные ситуации. Многие экономически развитые страны разработали новую энергетическую стратегию, которая основывается на диверсификации энергетических источников.
С этого времени ученые уделяют большое внимание проблемам всемирного энергосбережения и изучению возможностей применения нетрадиционных альтернативных источников энергии.
Освоение нетрадиционных источников
К нетрадиционным источникам энергии относятся:
- энергия солнца;
- энергия ветра;
- геотермальная;
- энергия морских приливов и волн;
- биомассы;
- низкопотенциальная энергия окружающей среды.
Их освоение представляется возможным благодаря повсеместной распространенности большинства видов, можно отметить также их экологическую чистоту и отсутствие эксплуатационных затрат на топливную составляющую.
Однако существуют и некоторые отрицательные качества, которые препятствуют применению их в производственных масштабах. Это – небольшая плотность потока, которая заставляет применять «перехватывающие» установки большой площади, также изменчивость во времени.
Все это приводит к тому, что подобные устройства обладают большой материалоемкостью, а значит, увеличиваются и капиталовложения. Ну, а процесс получения энергии из-за некоторого элемента случайности, связанного с погодными условиями, доставляет немало неприятностей.
Другой наиважнейшей проблемой остается «сохранение» этого энергетического сырья, так как существующие технологии аккумулирования электроэнергии не позволяют сделать это в больших количествах. Тем не менее, в бытовых условиях альтернативные источники энергии для дома пользуются все большей популярностью, поэтому ознакомимся с основными энергоустановками, которые можно установить в частном владении.
Солнечные батареи
Солнечная панель состоит из комплекса соединенных элементов, которые преобразуют солнечный свет в поток электронов. Характерной особенностью является тот факт, что они не в состоянии генерировать ток высокого напряжения. Отдельный элемент вырабатывает ток напряжением до 0,55 В, а одна батарея вырабатывает ток напряжением до 21 В, который позволяет питать 12-вольтовую аккумуляторную батарею.
Естественно, для обеспечения дома электроэнергией потребуется система, насчитывающая десятки таких устройств. Также в ее состав входят следующие компоненты:
- контроллер для управления зарядкой аккумуляторной батареи, предотвращает повторный заряд;
- инвертор, преобразующий ток из низкого в высокое напряжение;
- аккумулятор.
Все три элемента лучше приобрести в готовом виде, ну, а солнечную батарею можно изготовить самостоятельно.
Процесс изготовления батареи
Батарея собирается из модулей, состоящих из 30, 36 или 72 фотоэлементов. Они соединяются последовательно с источником питания, его максимальное напряжение составляет 50 В.
- Из фанеры вырезается дно корпуса и вставляется в рамку, по периметру которой высверливаются отверстия. Они необходимы для обеспечения вентиляции и предотвращения перегрева во время работы.
- Подложка для солнечных элементов вырезается по размеру корпуса, здесь также необходимо предусмотреть наличие отверстий.
- Корпус окрашивается и высушивается, после этого на него выкладываются вверх ногами солнечные элементы и запаиваются.
- Элементы соединяются для начала рядами, затем они подключаются к токоведущим шинам.
- Перевернутые элементы фиксируются при помощи силикона.
Величина выходного напряжения должна составлять около 18-20 В, в этом нужно предварительно убедиться. Также в течение нескольких дней проверяется работоспособность батареи, только после этого выполняется герметизация стыков и собирается система электроснабжения.
При установке панели следует обратить внимание на следующее:
- Не располагать батарею в тени деревьев или высоких сооружений.
- Произвести ориентацию батареи в сторону солнца.
- Правильно определить наклон.
- Обеспечить доступность для своевременного удаления пыли, грязи и слоя снега.
- Предусмотреть подставку, регулирующую угол наклона для зимнего и летнего сезона.
Ветрогенераторы
Альтернативные источники энергии для частного дома – это возобновляемые ресурсы, к которым можно отнести и энергию ветра. Наши предки умели строить мельницы, использующие воздушные потоки для вращения лопастей, сейчас же человек научился преобразовать их в электричество.
Существует несколько разновидностей ветряных генераторов, которые различаются в зависимости от основных параметров.
Размещение оси
Различают вертикальные и горизонтальные конструкции. Горизонтальные обеспечивают автоматический поворот основной части для поиска ветра, обладают более высоким уровнем КПД. Оборудование вертикальных генераторов расположено на земле, эксплуатация и обслуживание этого вида проще.
Количество лопастей
Существуют следующие виды:
- однолопастные;
- двухлопастные;
- трехлопастные;
- многолопастные.
Последний тип используется редко, в основном, при малой скорости ветра.
Материал для лопастей
Лопасти бывают жесткими и парусными, однако из-за быстрой потери своей функциональности, в результате резких порывов ветра, требуют частой замены.
Ветряная установка состоит из следующих основных элементов, которые можно изготовить собственноручно:
- Лопасти, которые в результате вращения обеспечивают движение ротора.
- Генератор, вырабатывающий переменный ток.
- Контроллер, преобразующий переменный ток в постоянный, необходимый для зарядки аккумуляторов.
- Аккумуляторы для накопления электроэнергии.
- Инвертор превращает постоянный ток в переменный, необходимый для функционирования всех бытовых приборов.
- Мачта для обеспечения поднятия лопастей до необходимой высоты с наиболее активными воздушными массами.
Тепловые насосы
Этот самая прогрессивная технология, в которой используются альтернативные источники энергии для дома своими руками, обеспечивающая значительную экономию средств на обогрев или охлаждение дома.
Принцип работы оборудования основан на цикле Карно: в результате резкого сжатия теплоносителя происходит повышение температуры. Противоположное действие наблюдается в функционировании холодильных и морозильных камер.
Для изготовления теплового насоса могут применяться некоторые узлы, использующиеся в данном оборудовании. Тепловая энергия, отбирающаяся из грунта, воздуха, воды, попадая в испаритель, превращается в газ, далее сжимается компрессором, а температура повышается.
Классификация насосов следующая:
- По количеству контуров:
- одноконтурные;
- двухконтурные;
- трехконтурные.
- По виду источника.
Встречаются следующие разработки.
Грунт-вода
Применяются с успехом на территориях с умеренным климатом, где прослеживается равномерный подогрев почвы в любое время года. Скважины бурятся неглубоко, поэтому разрешающие документы оформлять не придется. В зависимости от типа грунта используют зонд или коллектор.
Воздух-вода
Такие установки используются в зонах с климатом, где зимняя температура не опускается ниже 15-20 градусов. Аккумулирующееся тепло из воздуха используется для нагрева воды.
Вода-вода
Применяются в условиях наличия водоема: рек, озер, скважин, отстойников, грунтовых вод. Как известна температура водных источников значительно выше температуры воздуха в зимнее время. Этим и обусловлена эффективность данных установок.
Вода-воздух
Тепло из водоемов посредством компрессора передается воздуху и используется для обогрева жилых площадей.
Грунт-воздух
Наиболее универсальная система, использующая в качестве переносчиков энергии незамерзающие жидкости. Тепло из грунта посредством компрессора передается воздуху.
Воздух-воздух
Наиболее дешевая система, которая не требует проведения земляных работ, а также прокладки трубопровода. Способна как обогревать, так и охлаждать помещение.
При выборе одной из систем следует учесть следующее:
- геологию участка;
- возможность проведения земляных работ;
- наличие свободного пространства.
Эффективность установки зависит от правильности выбора источника альтернативной энергии.
Биогазовые установки
Газ образуется в результате обработки продуктов жизнедеятельности домашних птиц и животных. Переработанные отходы используются для удобрения почвы на приусадебных участках. Процесс основан на реакции брожения, в котором участвуют бактерии, живущие в навозе.
Самым лучшим источником биогаза считается навоз КРС, хотя для этого также подходят отходы птиц или другого домашнего скота.
Брожение происходит без доступа кислорода, поэтому целесообразно использовать закрытые емкости, которые еще называют биореакторами. Реакция активизируется, если периодически перемешивать массу, для этого используется ручной труд или различные электромеханические приспособления.
Также потребуется поддерживать температуру в установке от 30 до 50 градусов для обеспечения активности мезофильных и термофильных бактерий и участия их в реакции.
Изготовление конструкции
Самой простой биогазовой установкой является бочка с мешалкой, закрывающаяся крышкой. Газ из бочки поступает в резервуар через шланг, в крышке для этой цели проделывается отверстие. Такая конструкция обеспечивает газом одну или две газовые горелки.
Для получения масштабных объемов газа используется надземный или подземный бункер, который изготавливается из железобетона. Всю емкость целесообразно разделить на несколько отсеков, для того чтобы реакция происходила со сдвигом во времени.
Процесс брожения при участии мезофильных культур занимает до 30 дней, поэтому такие условия оптимальны для бесперебойного выделения газа. Загружают навоз через загрузочный бункер, с противоположной стороны отбирается отработанное сырье.
Емкость заполняется массой не полностью, примерно на 20 процентов, остальное пространство служит для скапливания газа. К крышке емкости подсоединяются две трубки, одна отводится к потребителю, а другая к гидрозатвору – емкости, заполненной водой. Это обеспечивает очищение и осушение газа, к потребителю подается газ высокого качества.
Мини гидроэлектростанции
Самодельные гидроэлектростанции – это дополнительные альтернативные источники энергии своими руками, их можно построить у ручья или водоема с плотиной. Основа этой конструкции – колесо, которое вращается потоками воды, а от скорости течения зависит мощность установки.
Как самостоятельно изготовить конструкцию?
Для осуществления задуманного понадобятся следующие материалы:
- автомобильные колеса;
- генератор;
- обрезки уголка и металла;
- фанера;
- медный провод;
- магниты неодимовые;
- полистироловая смола.
Колесо изготавливается из дисков размером 11 дюймов. Стальная труба разрезается на четыре части по вертикали, из получившихся сегментов получаются лопасти, их потребуется 16 штук. Лопасти крепятся сваркой, а диски – болтами.
Размеры сопла соответствуют ширине колеса, его изготавливают из обрезка металла. Придав соответствующую форму, края соединяют сваркой. Сопло должно быть настроено по высоте для регулирования водяного потока.
Далее, ось сваривается и на нее устанавливается колесо. Изготавливается генератор, который защищается металлическим крылом от брызг. Все элементы покрываются краской для защиты от влаги и коррозии.
Такое устройство не требует огромных капиталовложений, но оно способно значительно снизить расходы на электроэнергию.
Геотермальная энергия
В недрах земного шара таятся неизведанные виды альтернативных источников энергии. Человечество знает, какова сила и масштабы природных стихийных проявлений. Мощность извержения одного вулкана несравнима ни с одной из рукотворных энергетических установок.
К сожалению, человек еще не умеет использовать эту гигантскую энергию во благо, но природная теплота Земли или геотермальная энергетика приковывает взгляды ученых, так как она представляет собой неисчерпаемый ресурс.
Известно, что наша планета ежегодно излучает громадное количество внутреннего тепла, которое компенсируется радиоактивным распадом изотопов в коре земного шара. Различают два типа источника геотермальной энергии.
Подземные бассейны
Это естественные бассейны с горячей водой или пароводяной смесью – гидротермальные или паротермальные источники. Ресурсы из этих источников добываются посредством буровых скважин, далее энергия используется для нужд человечества.
Горные породы
Тепло горячих горных пород может быть использовано для нагревания воды. Для этого ее закачивают в горизонты для дальнейшего применения в энергетических целях.
Одним из недостатков этого вида энергии является его слабая концентрация. Однако в условиях, где при погружении на каждые 100 метров, температура увеличивается на 30-40 градусов, можно обеспечить хозяйственное ее применение.
Технология использования этой энергии в перспективных «геотермальных районах» обладает явными преимуществами:
- неисчерпаемость запасов;
- экологическая чистота;
- отсутствие больших издержек на разработку источников.
Дальнейшее развитие цивилизации невозможно без внедрения новых технологий в области энергетики. На этом пути стоят трудноразрешимые задачи, которые еще предстоит решить человечеству.
Тем не менее, освоение этого направления играет важную роль, и сегодня уже существует оборудование, способное существенно сэкономить ресурсы традиционные и альтернативные источники энергии являются отличной альтернативой им. Для воплощения таких идей требуется терпение, умелые руки, а также некоторые навыки и знания.
Видео
Ознакомиться с работой различных альтернативных источников энергии в частном доме вы сможете, посмотрев наше видео.
Добавить комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.
Как альтернативные источники энергии помогают получать тепло и электричество
Ухудшение экологии и истощение природных ресурсов заставляет задумываться о том, как получать электричество и тепло из возобновляемых источников.
В этой статье рассказываем, как работает альтернативная энергия и почему многие страны делают выбор в её пользу.
Что такое альтернативная энергия?
Энергия бывает возобновляемой (альтернативной) и невозобновляемой (традиционной).
Альтернативные источники энергии – это обычные природные явления, неисчерпаемые ресурсы, которые вырабатываются естественным образом. Такая энергия ещё называется регенеративной или «зелёной».
Невозобновляемые источники – это нефть, природный газ и уголь. Им ищут замену, потому что они могут закончиться. Ещё их использование связано с выбросом углекислого газа, парниковым эффектом и глобальным потеплением.
Человечество получает энергию, в основном за счёт сжигания ископаемого топлива и работы атомных электростанций. Альтернативная энергетика – это методы, которые отдают энергию более экологичным способом и приносят меньше вреда. Она нужна не только для промышленных целей, но и в простых домах для отопления, горячей воды, освещения, работы электроники.
Ресурсы возобновляемой энергии
- Солнечный свет
- Водные потоки
- Ветер
- Приливы
- Биотопливо (топливо из растительного или животного сырья)
- Геотермальная теплота (недра Земли)
Альтернативные виды энергии
1. Солнечная энергия
Один из самых мощных видов альтернативных источников энергии. Чаще всего её преобразуют в электричество солнечными батареями. Всей планете на целый год хватит энергии, которую солнце посылает на Землю за день. Впрочем, от общего объёма годовая выработка электроэнергии на солнечных электростанциях не превышает 2%.
Основные недостатки – зависимость от погоды и времени суток. Для северных стран извлекать солнечную энергию невыгодно. Конструкции дорогие, за ними нужно «ухаживать» и вовремя утилизировать сами фотоэлементы, в которых содержатся ядовитые вещества (свинец, галлий, мышьяк). Для высокой выработки необходимы огромные площади.
Солнечное электричество распространено там, где оно дешевле обычного: отдалённые обитаемые острова и фермерские участки, космические и морские станции. В тёплых странах с высокими тарифами на электроэнергию, оно может покрывать нужны обычного дома. Например, в Израиле 80% воды нагревается солнечной энергией.
Батареи также устанавливают на беспилотные автомобили, самолёты, дирижабли, поезда Hyperloop .
2. Ветроэнергетика
Запасов энергии ветра в 100 раз больше запасов энергии всех рек на планете. Ветровые станции помогают преобразовывать ветер в электрическую, тепловую и механическую энергию. Главное оборудование – ветрогенераторы (для образования электричества) и ветровые мельницы (для механической энергии).
Этот вид возобновляемой энергии хорошо развит – особенно в Дании, Португалии, Испании, Ирландии и Германии. К началу 2016 года мощность всех ветрогенераторов обогнала суммарную установленную мощность атомной энергетики.
Недостаток в том, что её нельзя контролировать (сила ветра непостоянна). Ещё ветроустановки могут вызывать радиопомехи и влиять на климат, потому что забирают часть кинетической энергии ветра – правда, учёные пока не знают хорошо это или плохо.
3. Гидроэнергия
Чтобы преобразовать движение воды в электричество нужны гидроэлектростанции (ГЭС) с плотинами и водохранилищами. Их ставят на реках с сильным потоком, которые не пересыхают. Плотины строят для того, чтобы добиться определённого напора воды – он заставляет двигаться лопасти гидротурбины, а она приводит в действие электрогенераторы.
Строить ГЭС дороже и сложнее относительно обычных электростанций, но цена электричества (на российских ГЭС) в два раза ниже. Турбины могут работать в разных режимах мощности и контролировать выработку электричества.
4. Волновая энергетика
Есть много способов генерации электричества из волн, но эффективно работают только три. Они различаются по типу установок на воде. Это камеры, нижняя часть которых погружена в воду, поплавки или установки с искусственным атоллом.
Такие волновые электростанции передают кинетическую энергию морских или океанических волн по кабелю на сушу, где она на специальных станциях преобразуется в электричество.
Этот вид используется мало – 1% от всего производства электроэнергии в мире. Системы тоже дорогие и для них нужен удобный выход к воде, который есть не у каждой страны.
5. Энергия приливов и отливов
Эту энергию берут от естественного подъёма и спада уровня воды. Электростанции ставят только вдоль берега, а перепад воды должен быть не меньше 5 метров. Для генерации электричества строят приливные станции, дамбы и турбины.
Приливы и отливы хорошо изучены, поэтому этот источник более предсказуем относительно других. Но освоение технологий было медленным и их доля в глобальном производстве мала. Кроме того, приливные циклы не всегда соответствуют норме потребления электричества.
6. Энергия температурного градиента (гидротермальная энергия)
Морская вода имеет неодинаковую температуру на поверхности и в глубине океана. Используя эту разницу, получают электроэнергию.
Первая установка, которая даёт электричество за счёт температуры океана была сделана ещё в 1930 году. Сейчас есть океанические электростанции закрытого, открытого и комбинированного типа в США и Японии.
7. Энергия жидкостной диффузии
Это новый вид альтернативного источника энергии. Осмотическая электростанция, установленная в устье реки, контролирует смешение солёной и пресной воды и извлекает энергию из энтропии жидкостей.
Выравнивание концентрации солей даёт избыточное давление, которое запускает вращение гидротурбины. Пока есть только одна такая энергетическая установка в Норвегии.
8. Геотермальная энергия
Геотермальные станции берут внутреннюю энергию Земли – горячую воду и пар. Их ставят в вулканических районах, где вода у поверхности или добраться до неё можно пробурив скважину (от 3 до 10 км.).
Извлекаемая вода отапливает здания напрямую или через теплообменный блок. Ещё её перерабатывают в электричество, когда горячий пар вращает турбину, соединённую с электрогенератором.
Недостатки: цена, угроза температуре Земли, выбросы углекислого газа и сероводорода.
Больше всего геотермальных станций в США, Филиппинах, Индонезии, Мексике и Исландии.
9. Биотопливо
Биоэнергетика получает электричество и тепло из топлива первого, второго и третьего поколений.
- Первое поколение – твёрдое, жидкое и газообразное биотопливо (газ от переработки отходов). Например, дрова, биодизель и метан.
- Второе поколение – топливо, полученное из биомассы (остатков растительного или животного материала, или специально выращенных культур).
- Третье поколение – биотопливо из водорослей.
Биотопливо первого поколения легко получить. Сельские жители ставят биогазовые установки, где биомасса бродит под нужной температурой.
Самый традиционный способ и древнейшее топливо – дрова. Сейчас для их производства сажают энергетические леса из быстрорастущих деревьев, тополя или эвкалипта.
Плюсы и минусы альтернативной энергии
Главная перспектива альтернативных источников – существования человечества даже в условиях жёсткого дефицита нефти, газа и угля.
Преимущества:
- Доступность – не нужно обладать нефтяными или газовыми месторождениями. Правда, это относится не ко всем видам. Страны без выхода к морю не смогут получать волновую энергию, а геотермальную можно преобразовывать только в вулканических районах.
- Экологичность – при образовании тепла и электричества нет вредных выбросов в окружающую среду.
- Экономия – полученная энергия имеет низкую себестоимость.
Недостатки и проблемы:
- Траты на этапе строительства и обслуживание – оборудование и расходные материалы дорогие. Из-за этого повышается итоговая цена электроэнергии, поэтому она не всегда оправдана экономически. Сейчас главная задача разработчиков снизить себестоимость установок.
- Зависимость от внешних факторов: невозможно контролировать силу ветра, уровень приливов, результат переработки солнечной энергии зависит от географии страны.
- Низкий КПД и маленькая мощность установок (кроме ГЭС). Вырабатываемая мощность не всегда соответствует уровню потребления.
- Влияние на климат. Например, спрос на биотопливо привёл к сокращению посевных площадей для продовольственных культур, а плотины для ГЭС изменили характер рыбных хозяйств.
Возобновляемая энергия в мире
Главный потребитель возобновляемых источников энергии – Евросоюз. В некоторых странах альтернативная энергетика вырабатывает почти 40% от всей электроэнергии. Там уже прижились разные меры поддержки: скидочные тарифы на подключение и возврат денег за покупку оборудования. Не отстают страны Востока и США.
Германия
40% электроэнергии в Германии дают возобновляемые источники. Она лидер по числу ветровых установок, которые генерируют 20,4 % электричества. Оставшаяся доля приходится на гидроэнергетику, биоэнергетику и солнечную энергетику. Немецкое правительство поставило план: вырабатывать 80% энергии за счёт альтернативных источников к 2050 году, но закрывать атомные электростанции пока не хочет.
Исландия
У Исландии очень много горячей воды, потому что она расположилась в зоне вулканической активности. Страна обеспечивает 85% домов отоплением из геотермальных источников и покрывает ими 65% потребностей населения в электроэнергии. Мощность источников настолько велика, что они хотят наладить экспорт энергии в Великобританию.
Швеция
После нефтяного кризиса 1973 года страна стала искать другие источники энергии. Началось всё с ГЭС и АЭС. Из-за атомных станций шведов часто критиковали Greenpeace, но с конца 80-х доля энергии от АЭС не растёт.
Начиная с 90-х Швеция строит оффшорные ветропарки в море. На выбросы предприятиями углерода в атмосферу введён дополнительный налог, а для производителей ветровой, солнечной и биоэнергии есть льготы.
Ещё Швеция активно использует энергию от переработки мусора и даже планирует его закупать у соседних стран, чтобы отказаться от нефти. Некоторые города получают тепло от мусоросжигательных заводов.
Китай
В Китае самая мощная ГЭС в мире – «Три ущелья». По состоянию на 2018 год – это крупнейшее по массе сооружение. Её сплошная бетонная плотина весит 65,5 млн тонн. За 2014 станция произвела рекордные для мира 98,8 млрд кВт⋅ч.
Крупнейшие ветровые ресурсы тоже здесь (три четверти из них поставлены в море). К 2020 году страна планирует выработать при их помощи 210 ГВт.
Ещё тут 2 700 геотермальных источников и делают 63% устройств для преобразования солнечной энергии. Китай занимает третье место в производстве биотоплива на основе этанола.
Альтернативная энергия в России
Разное географическое положение регионов и специфика климатических поясов в России не позволяют развивать эту отрасль равномерно. Нет инвестиций и есть пробелы в законе.
Виды возобновляемой энергии в России
Солнечная энергия
Используется и в промышленных масштабах, и у местного населения как резервный или основной источник тепла и электричества. Мощность всех солнечных установок – 400 МВт, из них самые крупные в Самарской, Астраханской, Оренбургской областях и Крыму. Самая мощная СЭС – «Владиславовка» (Крым). Ещё разрабатываются проекты для Сибири и Дальнего Востока.
Ветровая энергетика
Ветровая возобновляемая энергия в России представлена чуть хуже, чем солнечная, хотя и здесь есть промышленные установки. Общая мощность ветровых генераторов в нашей стране – 183,9 МВт (0,08 % от всей энергосистемы). Больше всего установок – в Крыму, а мощнейшая находится в Адыгее – «Адыгейская ВЭС».
Гидроэнергетика
Это самый популярный вариант альтернативного источника энергии в России. Около 200 речных ГЭС вырабатывают до 20% от всей энергии в стране. В заливе Кислая губа в Мурманской области с 1968 года есть приливная электростанция – «Кислогубская ПЭС». Самая крупная ГЭС стоит на реке Енисей – «Саяно-Шушенская».
Геотермальная энергетика
За счёт обилия вулканов этот вид энергетики распространён на Камчатке. Там 40% потребляемой энергии генерируется на геотермальных источниках. По данным учёных, потенциал Камчатки оценивается в 5000 МВт, а вырабатывается только 80 МВт энергии в год. Ещё геотермальные станции есть на Курилах, Ставропольском и Краснодарском крае.
Биотопливо
Наша страна входит в тройку экспортёров пеллет на европейском рынке. В России есть заводы, создающие из остатков древесины пеллеты и брикеты, которыми топят котлы и печки.
Сельскохозяйственные отходы преобразуют в жидкое топливо и биогаз для дизельных двигателей. А вот свалочный газ не используется вообще, его просто выбрасывают в атмосферу, нанося ущерб окружающей среде.
Компании, которые занимаются возобновляемыми источниками энергии
Рост инвестиций в возобновляемую энергетику и поддержка правительства помогает многим компаниям успешно вести бизнес.
First Solar Inc.
Эта американская компания была образована в 1990 году и стала известной благодаря производству солнечных батарей. Сейчас это крупнейшая фирма, которая продаёт солнечные модули, поставляет оборудование и отвечает за технический сервис.
Vestas Wind Systems A/S
Старейший производитель ветрогенераторов из Дании. Компания основана в 1898 году и на сегодняшний день ей удалось установить более 60 тысяч ветровых турбин в 63 странах. Vestas продаёт отдельные генераторы, комплексные станции и обслуживает устройства.
Atlantica Yield PLC
Эта компания с офисом в Лондоне владеет классическими линиями электропередач, солнечными и ветровыми станциями в Северной Америке, Испании, Алжире, Южной Америке и Южной Африке.
ABB Ltd. Asea Brown Boveri
Шведско-швейцарская компания, известная автомобильными двигателями, генераторами и робототехникой. С 1999 года бренд занимается преобразованием солнечной и ветровой энергии. В 2013 году компания стала мировым лидером в области оборудования фотоэлектрической энергии.
10 альтернативных источников энергии, о которых вы ничего не знали
Для решения проблемы ограниченности ископаемых видов топлива исследователи во всем мире работают над созданием и внедрением в эксплуатацию альтернативных источников энергии. И речь идет не только о всем известных ветряках и солнечных батареях. На смену газу и нефти может прийти энергия от водорослей, вулканов и человеческих шагов. Recycle выбрал десять самых интересных и экологически чистых энерго-источников будущего.
Джоули из турникетов
Тысячи людей каждый день проходят через турникеты при входе на железнодорожные станции. Сразу в нескольких исследовательских центрах мира появилась идея использовать поток людей в качестве инновационного генератора энергии. Японская компания East Japan Railway Company решила оснастить каждый турникет на железнодорожных станциях генераторами. Установка работает на вокзале в токийском районе Сибуя: в пол под турникетами встроены пьезоэлементы, которые производят электричество от давления и вибрации, которую они получают, когда люди наступают на них.
Другая технология «энерго-турникетов» уже используется в Китае и в Нидерландах. В этих странах инженеры решили использовать не эффект нажатия на пьезоэлементы, а эффект толкания ручек турникета или дверей-турникетов. Концепция голландской компании Boon Edam предполагает замену стандартных дверец при входе в торговые центры (которые обычно работают по системе фотоэлемента и сами начинают крутиться) на двери, которые посетитель должен толкать и таким образом производить электроэнергию.
В голландском центре Natuurcafe La Port такие двери-генераторы уже появились. Каждая из них производит около 4600 киловатт-час энергии в год, что на первый взгляд может показаться незначительным, но служит неплохим примером альтернативной технологии по выработке электричества.
Водоросли отапливают дома
Водоросли стали рассматриваться в качестве альтернативного источника энергии относительно недавно, но технология, по мнению экспертов, очень перспективна. Достаточно сказать, что с 1 гектара площади водной поверхности, занятой водорослями, в год можно получать 150 тысяч кубометров биогаза. Это приблизительно равно объёму газа, который выдает небольшая скважина, и достаточно для жизнедеятельности небольшого поселка.
Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Водоросли — идеальное эко-топливо, потому что растут в водной среде и не требуют земельных ресурсов, обладают высокой продуктивностью и не наносят ущерба окружающей среде.
По оценкам экономистов, к 2018 году глобальный оборот от переработки биомассы морских микроводорослей может составить около 100 млрд долларов. Уже существуют реализованные проекты на «водорослевом» топливе — например, 15-квартирный дом в немецком Гамбурге. Фасады дома покрыты 129 аквариумами с водорослями, служащими единственным источником энергии для отопления и кондиционирования здания, получившего название Bio Intelligent Quotient (BIQ) House.
«Лежачие полицейские» освещают улицы
Концепцию выработки электроэнергии при помощи так называемых «лежачих полицейских» начали реализовывать сначала в Великобритании, затем в Бахрейне, а скоро технология дойдет и до России. Все началось с того, что британский изобретатель Питер Хьюс создал «Генерирующую дорожную рампу» (Electro-Kinetic Road Ramp) для автомобильных дорог. Рампа представляет собой две металлические пластины, немного поднимающиеся над дорогой. Под пластинами заложен электрический генератор, который вырабатывает ток всякий раз, когда автомобиль проезжает через рампу.
В зависимости от веса машины рампа может вырабатывать от 5 до 50 киловатт в течение времени, пока автомобиль проезжает рампу. Такие рампы в качестве аккумуляторов способны питать электричеством светофоры и подсвечиваемые дорожные знаки. В Великобритании технология работает уже в нескольких городах. Способ начал распространяться и на другие страны — например, на маленький Бахрейн.
Самое удивительное, что нечто подобное можно будет увидеть и в России. Студент из Тюмени Альберт Бранд предложил такое же решение по уличному освещению на форуме «ВУЗПромЭкспо». По подсчетам разработчика, в день по «лежачим полицейским» в его городе проезжает от 1000 до 1500 машин. За один «наезд» автомобиля по оборудованному электрогенеретором «лежачему полицейскому» будет вырабатываться около 20 ватт электроэнергии, не наносящей вред окружающей среде.
Больше, чем просто футбол
Разработанный группой выпускников Гарварда, основателей компании Uncharted Play, мяч Soccket может за полчаса игры в футбол сгенерировать электроэнергию, которой будет достаточно, чтобы несколько часов подпитывать LED-лампу. Soccket называют экологически чистой альтернативой небезопасным источникам энергии, которые нередко используются жителями малоразвитых стран.
Принцип аккумулирования энергии мячом Soccket довольно прост: кинетическая энергия, образуемая от удара по мячу, передается крошечному механизму, похожему на маятник, который приводит в движение генератор. Генератор производит электроэнергию, которая накапливается в аккумуляторе. Сохраненная энергия может быть использована для питания любого небольшого электроприбора — например, настольной лампы со светодиодом.
Выходная мощность Soccket составляет шесть ватт. Генерирующий энергию мяч уже завоевал признание мирового сообщества: получил множество наград, был высоко оценен организацией Clinton Global Initiative, а также получил хвалебные отзывы на известной конференции TED.
Скрытая энергия вулканов
Одна из главных разработок в освоении вулканической энергии принадлежит американским исследователям из компаний-инициаторов AltaRock Energy и Davenport Newberry Holdings. «Испытуемым» стал спящий вулкан в штате Орегон. Соленая вода закачивается глубоко в горные породы, температура которых благодаря распаду имеющихся в коре планеты радиоактивных элементов и самой горячей мантии Земли очень высока. При нагреве вода превращается в пар, который подается в турбину, вырабатывающую электроэнергию.
На данный момент существуют лишь две небольшие действующие электростанции подобного типа – во Франции и в Германии. Если американская технология заработает, то, по оценке Геологической службы США, геотермальная энергия потенциально способна обеспечить 50% необходимого стране электричества (сегодня ее вклад составляет лишь 0,3%).
Другой способ использования вулканов для получения энергии предложили в 2009 году исландские исследователи. Рядом с вулканическими недрами они обнаружили подземный резервуар воды с аномально высокой температурой. Супер-горячая вода находится где-то на границе между жидкостью и газом и существует только при определенных температуре и давлении.
Ученые могли генерировать нечто подобное в лаборатории, но оказалось, что такая вода встречается и в природе — в недрах земли. Считается, что из воды «критической температуры» можно извлечь в десять раз больше энергии, чем из воды, доведенной до кипения классическим образом.
Энергия из тепла человека
Принцип термоэлектрических генераторов, работающих на разнице температур, известен давно. Но лишь несколько лет назад технологии стали позволять использовать в качестве источника энергии тепло человеческого тела. Группа исследователей из Корейского ведущего научно-технического института (KAIST) разработала генератор, встроенный в гибкую стеклянную пластинку.
Т акой гаджет позволит фитнес-браслетам подзаряжаться от тепла человеческой руки — например, в процессе бега, когда тело сильно нагревается и контрастирует с температурой окружающей среды. Корейский генератор размером 10 на 10 сантиметров может производить около 40 милливат энергии при температуре кожи в 31 градус Цельсия.
Похожую технологию взяла за основу молодая Энн Макосински, придумавшая фонарик, заряжающийся от разницы температур воздуха и человеческого тела. Эффект объясняется использованием четырех элементов Пельтье: их особенностью является способность вырабатывать электричество при нагреве с одной стороны и охлаждении с другой стороны.
В итоге фонарик Энн производит довольно яркий свет, но не требует батарей-акуумуляторов. Для его работы необходима лишь температурная разница всего в пять градусов между степенью нагрева ладони человека и температурой в комнате.
Шаги по «умной» тротуарной плитке
На любую точку одной из оживленных улиц приходится до 50000 шагов в день. Идея использовать пешеходный поток для полезного преобразования шагов в энергию была реализована в продукте, разработанном Лоуренсом Кемболл-Куком, директором британской Pavegen Systems Ltd. Инженер создал тротуарную плитку, генерирующую электроэнергию из кинетической энергии гуляющих пешеходов.
Устройство в инновационной плитке сделано из гибкого водонепроницаемого материала, который при нажатии прогибается примерно на пять миллиметров. Это, в свою очередь, создаёт энергию, которую механизм преобразует в электричество. Накопленные ватты либо сохраняются в литиевом полимерном аккумуляторе, либо сразу идут на освещение автобусных остановок, витрин магазинов и вывесок.
Сама плитка Pavegen считается абсолютно экологически чистой: ее корпус изготовлен из нержавеющей стали специального сорта и переработанного полимера с низким содержанием углерода. Верхняя поверхность изготовлена из использованных шин, благодаря этому плитка обладает прочностью и высокой устойчивостью к истиранию.
Во время проведения летней Олимпиады в Лондоне в 2012 году плитку установили на многих туристических улицах. За две недели удалось получить 20 миллионов джоулей энергии. Этого с избытком хватило для работы уличного освещения британской столицы.
Велосипед, заряжающий смартфоны
Чтобы подзарядить плеер, телефон или планшет, необязательно иметь под рукой розетку. Иногда достаточно лишь покрутить педали. Так, американская компания Cycle Atom выпустила в свет устройство, позволяющее заряжать внешний аккумулятор во время езды на велосипеде и впоследствии подзаряжать мобильные устройства.
Продукт, названный Siva Cycle Atom, представляет собой легкий велосипедный генератор с литиевым аккумулятором, предназначенным для питания практически любых мобильных устройств, имеющих порт USB. Такой мини-генератор может быть установлен на большинстве обычных велосипедных рам в течение считанных минут. Сам аккумулятор легко снимается для последующей подзарядки гаджетов. Пользователь занимается спортом и крутит педали — а спустя пару часов его смартфон уже заряжен на 100 поцентов.
Компания Nokia в свою очередь тоже представила широкой публике гаджет, присоединяемый к велосипеду и позволяющий переводить кручение педалей в способ получегия экологически безопасной энергии. Комплект Nokia Bicycle Charger Kit имеет динамо-машину, небольшой электрический генератор, который использует энергию от вращения колес велосипеда и подзаряжает ей телефон через стандартный двухмиллиметровый разъем, распространенный в большинстве телефонов Nokia.
Польза от сточных вод
Любой крупный город ежедневно сбрасывает в открытые водоемы гигантское количество сточных вод, загрязняющих экосистему. Казалось бы, отравленная нечистотами вода уже никому не может пригодиться, но это не так — ученые открыли способ создавать на ее основе топливные элементы.
Одним из пионеров идеи стал профессор Университета штата Пенсильвания Брюс Логан. Общая концепция весьма сложная для понмания неспециалиста и построена на двух столпах — применении бактериальных топливных ячеек и установке так называемого обратного электродиализа. Бактерии окисляют органическое вещество в сточных водах и производят в данном процессе электроны, создавая электрический ток.
Для производства электричества может использоваться почти любой тип органического отходного материала – не только сточные воды, но и отходы животноводства, а также побочные продукты производств в виноделии, пивоварении и молочной промышленности. Что касается обратного электродиализа, то здесь работают электрогенераторы, разделенные мембранами на ячейки и извлекающие энергию из разницы в солености двух смешивающихся потоков жидкости.
«Бумажная» энергия
Японский производитель электроники Sony разработал и представил на Токийской выставке экологически чистых продуктов био-генератор, способный производить электроэнергию из мелко нарезанной бумаги. Суть процесса заключается в следующем: для выделения целлюлозы (это длинная цепь сахара глюкозы, которая находится в зеленых растениях) необходим гофрированный картон.
Цепь разрывается с помощью ферментов, а образовавшаяся от этого глюкоза подвергается обработке другой группой ферментов, с помощью которых высвобождаются ионы водорода и свободные электроны. Электроны направляются через внешнюю цепь для выработки электроэнергии. Предполагается, что подобная установка в ходе переработки одного листа бумаги размером 210 на 297 мм может выработать около 18 Вт в час (примерно столько же энергии вырабатывают 6 батареек AA).
Метод является экологически чистым: важным достоинством такой «батарейки» является отсутствие металлов и вредных химических соединений. Хотя на данный момент технология еще далека от коммерциализации: электричества вырабатывается достаточно мало – его хватает лишь на питание небольших портативных гаджетов.
8 необычных источников альтернативной энергии для дома, офиса и отдыха
Получайте на почту один раз в сутки одну самую читаемую статью. Присоединяйтесь к нам в Facebook и ВКонтакте.
Солнечные панели в окнах
В наше время самым распространенным в быту альтернативным источником энергии являются солнечные панели. Традиционно их устанавливают на крышах частных домов или во дворах. Но с недавних пор стало возможным размещать эти элементы прямо в окнах, что позволяет использовать такие батареи даже владельцам обычных квартир в многоэтажных домах.
При этом уже появились решения, позволяющие создавать солнечные панели с высоким уровнем прозрачности. Именно такие энергетические элементы и следует устанавливать в окнах жилых помещений.
К примеру, прозрачные солнечные панели разработали специалисты из Мичиганского Государственного Университета. Эти элементы пропускают 99 процентов проходящего через них света, но имеют при этом коэффициент полезного действия в 7%.
Uprise – ветряная турбина на прицепе
Компания Uprise создала необычную ветряную турбину высокой мощности, которую можно использовать как в быту, так и в промышленных масштабах. Этот ветряк располагается в прицепе, который может передвигать за собой внедорожник или дом на колесах.
В сложенном состоянии с турбиной Uprise можно ездить по дорогам общего пользования. Но в развернутом состоянии она превращается в полноценный ветряк высотой пятнадцать метров и мощностью 50 кВт.
Uprise можно использовать во время путешествий в доме на колесах, для обеспечения энергией отдаленных объектов или обычных частных жилых домов. Установив эту турбину у себя во дворе, ее владелец может даже продавать излишки электричества соседям.
Makani Power – электростанция на основе воздушного змея
Makani Power – это проект одноименной компании, перешедшей недавно в подчинение полусекретной лаборатории инноваций Google X . Идея данной технологии одновременно проста и гениальна. Речь идет о небольшом воздушном змее, который может летать на высоте до одного километра и вырабатывать электричество.
Летательный аппарат Makani Power оснащен встроенными ветряными турбинами, которые будут активно работать на высоте, где скорость ветра значительно больше, чем на уровне земли. Полученная энергия в данном случае передается по шнуру, соединяющем воздушного змея с базовой станцией.
Энергия будет также вырабатываться от движений самого летательного аппарата Makani Power. Дергая под силой ветра трос, этот воздушный змей заставит крутиться динамо-машину, встроенную в базовую станцию.
При помощи Makani Power можно обеспечить энергией как частные дома, так и отдаленные объекты, куда нецелесообразно проводить традиционную линию электропередач.
Betaray – стеклянный шар для аккумуляции солнечной энергии
Современные солнечные батареи все еще имеют весьма низкий коэффициент полезного действия. А потому для получения от них высоких производственных показателей приходится застилать панелями достаточно большие пространства. Но технология с названием Betaray позволяет увеличить КПД примерно в три раза.
Betaray – это небольшая по размерам установка, которую можно расположить во дворе частного дома или на крыше многоэтажки. В ее основе лежит прозрачная стеклянная сфера диаметром чуть меньше одного метра. Она аккумулирует солнечный свет и фокусирует его на достаточно небольшую фотоэлектрическую панель. Максимальный КПД данной технологии имеет потрясающе высокий показать в 35 процентов.
При этом сама установка Betaray является динамической. Она автоматически подстраивается под положение Солнца на небе, чтобы в любой момент работать на максимуме возможностей. И даже ночью эта батарея вырабатывает электричество, преобразуя свет от Луны, звезды и уличного освещения.
Little Sun – солнечный подсолнух для бытовых нужд
Датско-исландский художник Олафур Элиассон дал старт необычному проекту с названием Little Sun, который объединяет в себе творческое начало, технологии и социальные обязательства успешных людей перед обездоленными. Речь идет о небольшом устройстве в виде цветка подсолнуха, которые в течение дня наполняется энергией от солнечного света, чтобы вечерами нести освещение в самые темные уголки планеты.
Каждый желающий может пожертвовать деньги на то, чтобы солнечный светильник Little Sun появился в жизни какой-нибудь семьи из Страны Третьего Мира. Лампы Little Sun позволяют детям из трущоб и отдаленных деревень отдавать вечера под учебу или чтение, без которых невозможен успех в современном обществе.
Светильники Little Sun можно также приобрести и для себя, сделав их частью собственной жизни. Эти устройства можно использовать при выезде на природу или для создания потрясающей вечерней атмосферы на открытых площадках.
Green Heart – спортивная площадка, которая превращает сожженные калории в электроэнергию
Многие скептики посмеиваются над спортсменами, утверждая, что затрачиваемые ими во время выполнения упражнений силы вполне можно использовать для выработки электричества. Создатели спортивной площадки Green Heart пошли на поводу у такого мнения и создали первый в мире набор уличных тренажеров, каждый из которых является маленькой электростанцией.
Первая спортивная площадка Green Heart появилась в ноябре 2014 года в Лондоне. Электричество, которое вырабатывают на ней любители физических упражнений, можно использовать для зарядки мобильных устройств: смартфонов или планшетных компьютеров.
Излишки энергии площадка Green Heart отправляет в локальные электросети.
Giraffe Street Lamp – электростанция, спрятанная в качелях для детей
Парадоксально, но заставить вырабатывать «зеленую» энергию можно даже детей. Ведь они никогда не прочь что-нибудь вытворить, как-нибудь поиграть и развлечь себя. А потому голландские инженеры создали необычные качели с названием Giraffe Street Lamp, которые используют детскую непоседливость в процессе производства электричества.
Качели Giraffe Street Lamp вырабатывают энергию в то время, когда ими пользуются по прямому назначению. Раскачиваясь в сиденье, дети или взрослые стимулируют работу динамо-машины, встроенной в данную конструкцию.
Конечно, полученного электричества не хватит для полноценного функционирования частного жилого дома. Зато накопленной за день игр энергии вполне достаточно для работы не очень мощного уличного фонаря в течение пары часов после наступления сумерек.
Power Pocket: тепло человеческого тела как альтернативный источник энергии
Мобильный оператор Vodafone осознает, что его прибыли становятся больше, когда телефоны клиентов работают круглосуточно, а сами их владельцы не беспокоятся о том, где найти розетку для зарядки аккумуляторов своего гаджета. А потому эта компания спонсировала разработку необычной технологии с названием Power Pocket.
Устройства на основе технологии Power Pocket должны находиться как можно ближее к телу человека, чтобы использовать его тепло для производства электроэнергии для бытовых нужд.
На данный момент, на основе технологии Power Pocket создано два практичных товара: шорты и спальный мешок. Впервые они были опробованы во время музыкального фестиваля Isle of Wight Festival в 2013 году. Опыт оказался удачным, одной ночи человека в таком спальном мешке оказалось достаточно, чтобы зарядить аккумулятор смартфона примерно на 50 процентов.
В данном обзоре мы рассказали лишь про те альтернативные источники энергии, которые можно использовать в бытовых нуждах: дома, в офисе или во время отдыха. Но есть еще немало неординарных современных «зеленых» технологий, разработанных для использования в промышленных масштабах. Про них можно прочитать в обзоре 10 самых необычных источников альтернативной энергии .
Понравилась статья? Тогда поддержи нас, жми: