Что такое ик. Что такое инфракрасное излучение

Что такое ик. Что такое инфракрасное излучение

Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

Ранее лабораторными источниками инфракрасного излучения служили исключительно раскаленные тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до

1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами — детекторами, чувствительными к нагреву инфракрасным излучением [3] .

ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решетки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте [3] .

Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов [3] .

Применение

Медицина

Инфракрасные лучи применяются в физиотерапии.

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата.

При покраске

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект. Скорость и затрачиваемая энергия при инфракрасной сушке меньше тех же показателей при традиционных методах.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции.

Антикоррозийное средство

Инфракрасные лучи применяются с целью предотвращения коррозии поверхностей, покрываемых лаком.

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Кроме того, инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасные обогреватели используются для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды).

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Проверка денег на подлинность

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесенные на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность [источник не указан 624 дня] . Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надежной защитой от подделок.

Опасность для здоровья

Сильное инфракрасное излучение в местах высокого нагрева может вызывать опасность для глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких местах необходимо надевать специальные защитные очки для глаз. [4]

См. также

Другие способы теплопередачи

Способы регистрации (записи) ИК-спектров.

Примечания

  1. Длина электромагнитной волны в вакууме.
  2. Инфракрасное излучение // Большая энциклопедия Кирилла и Мефодия
  3. 123 Спектр // Энциклопедия Кольера
  4. Monona RossolThe artist’s complete health and safety guide. — 2001. — С. 33. — 405 с. — ISBN 978-1-58115-204-3

Ссылки

  • На Викискладе есть медиафайлы по теме Инфракрасное излучение
  • Инфракрасное излучение — статья из Физической энциклопедии
  • Инфракрасное излучение — статья из Большой советской энциклопедии

Для улучшения этой статьи по физике желательно ? :
  • Проставив сноски, внести более точные указания на источники.
  • Исправить статью согласно стилистическим правилам Википедии.
  • Викифицировать статью.
Электромагнитный спектр
Видимый спектрфиолетовый | синий | голубой | зелёный | жёлтый | оранжевый | красный
МикроволныW | V | Q | Ka | K | Ku | X | C | S | L
РадиоволныКВЧ/EHF | СВЧ/SHF | УВЧ/UHF | ОВЧ/VHF | ВЧ/HF | СЧ/MF | НЧ/LF | ОНЧ/VLF | ИНЧ/ULF | СНЧ/SLF | КНЧ/ELF
Длины волнУльтракороткие волны | Короткие волны | Средние волны | Длинные волны

Wikimedia Foundation . 2010 .

Смотреть что такое “Инфракрасное излучение” в других словарях:

инфракрасное излучение — Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне 7,6•10 7 10 3 м [ГОСТ 21934 83] инфракрасное излучение Оптическое излучение, характеризующееся длинами волн, расположенными в диапазоне от 0,76 мкм до 1 см.… … Справочник технического переводчика

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ — (ИК излучение, ИК лучи), электромагнитное излучение, занимающее спектр. область между красным концом видимого излучения (с длиной волны l»0,74 мкм) и KB радиоизлучением (l=1 2 мм). ИК область спектра обычно условно разделяют на ближнюю (0,74 2,5… … Физическая энциклопедия

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ — ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ, излучение, занимающее в ЭЛЕКТРОМАГНИТНОМ СПЕКТРЕ диапазон между красной границей видимого спектра и микроволнами. Часто называют тепловым излучением. Впервые было открыто сэром Вильямом Гершелем в 1800 г. Диапазон длин… … Научно-технический энциклопедический словарь

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ — не видимое глазом электромагнитное излучение в пределах длин волн ? от 1 2 мм до 0,74 мкм. Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Напр., слой воды в несколько см непрозрачен… … Большой Энциклопедический словарь

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ — (ИК излучение), не видимое глазом электромагнитное излучение в пределах длин волн от 1 2 мм до 0,74 мкм. Составляет около 50% излучения Солнца, большую часть излучения электрической лампы. Инфракрасное излучение регистрируют болометрами,… … Современная энциклопедия

Инфракрасное излучение — (ИК излучение), не видимое глазом электромагнитное излучение в пределах длин волн от 1 2 мм до 0,74 мкм. Составляет около 50% излучения Солнца, большую часть излучения электрической лампы. Инфракрасное излучение регистрируют болометрами,… … Иллюстрированный энциклопедический словарь

Инфракрасное излучение — летательного аппарата тепловое излучение двигателя и нагретых частей поверхности летательного аппарата. Инфракрасная область в оптическом спектре электромагнитных колебаний занимает диапазон от 0,78 мкм до 1 мм. Источниками инфракрасного… … Энциклопедия техники

Инфракрасное излучение — не видимое глазом электромагнитное излучение с длиной волны от 1 2 мм до 0,74 мкм; наблюдается гл. обр. при работе у горячих печей расплавленным металлом или стеклом, а также в технологических процессах с применением электрической дуги. Оказывает … Российская энциклопедия по охране труда

инфракрасное излучение — 3.51 инфракрасное излучение : Излучение, имеющее длину электромагнитных волн от 760 до 10,7 нм. Источник: ГОСТ Р 53321 2009: Аппараты теплоге … Словарь-справочник терминов нормативно-технической документации

Инфракрасное излучение — ИК излучение, инфракрасные лучи, электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм) и коротковолновым радиоизлучением (λ Инфракрасное излучение 1 2 мм).… … Большая советская энциклопедия

Что такое инфракрасное излучение и как ИК-лучи влияют на наш организм

Что такое инфракрасное излучение

  • коротковолновое ИК излучение, соответствующее температурам более 700 °C ;
  • средневолновое излучение, которое соответствует t 300 – 700 °C;
  • длинноволновое излучение, соответствующее температурам 30 – 300 °C.

Наиболее мощным их источником является Солнце. Спектр солнечных лучей лежит в инфракрасной области почти наполовину. Вспомните, что в зимний период существует возможность греться в солнечных лучах при отрицательной температуре окружающей среды. Это и есть результат воздействия на наш организм длинноволнового ИК излучения.

Принцип воздействия инфракрасных лучей на окружающие их тела достаточно прост – ИК

излучение поглощается встречным телом и преобразуется в тепловую энергию. Тепловая энергия затем передается в окружающую среду посредством воздуха. Пребывая в миллионах километров от нашей планеты, Солнце, тем не менее, способно нагревать ее поверхность, и как результат, и воздух, делая возможной привычную нам земную жизнь.

В результате нагревания солнечными лучами земная поверхность принимается излучать ИК лучи в диапазоне длин волн 7 – 17 мкм с пиком интенсивности на длине волны 10 мкм. Что касается человеческого организма, он тоже испускает ИК излучение, происходит это в интервале 3 – 50 мкм, пик излучения располагается на длине волны 9.6 мкм.

Как уже упоминалось выше ИК излучение из коротковолновой области способно проникать в организм на наибольшую глубину. Данный вид излучения находит широкое применение в области медицины. Физиотерапевтическое лечение с узконаправленным воздействием осуществляется под присмотром лечащего врача.

Суть метода заключается в том, что благодаря максимальному прогреванию тканей происходит интенсификация деятельности специфических клеточных структур, повышение уровня иммуноглобулинов, рост активности ферментов и эстрогенов, а также осуществляется ряд других биохимических реакций во всех типах кровяных клеток и в целом по организму. Интересно что, излучение с этой длиной волны также хорошо поглощается нашим организмом.

Инфракрасное излучение применение в физиотерапии

Тепловое излучение человеческого тела лежит в длинноволновом ИК диапазоне, в результате излучение воспринимается организмом как его собственное и без проблем проникает внутрь тканей, обеспечивая быстрое их прогревание.

ИК излучение является биорезонансным для человека, следовательно, оно существенно влияет на процессы внутри тканей, оказывая очищающий и оздоравливающий эффект на организм, способствуя его регенерации. То же можно сказать и о других биообъектах.

Читайте также:  Установка вытяжки в ванной своими руками. Устройство принудительной вытяжки в ванной комнате и туалете частного дома

При ИК обогреве происходит проникновение лучей сквозь кожу вглубь на приблизительно 5 сантиметров. При этом поглощение и отражение излучения различными слоями кожи происходит различным образом. Так коротковолновое ИК излучение имеет свойство проникать внутрь организма существенно глубже, чем излучение из длинноволновой области. Принцип его термического воздействия предельно прост. Больше 89

Длинноволновое ИК излучение по сравнению с коротковолновым отличается меньшим количеством налагаемых на него ограничений. Излучение из этой области спектра крайне важно для поддержания жизни на нашей планете и развития различных ее форм. Другое название этого излучения – биогенетические лучи или лучи жизни.процентов попадающего на ткани излучения поглощается содержащейся в них влагой. В результате поглощения излучения, происходит возбуждение нервных рецепторов, расположенных в наружных слоях кожного покрова, и человек чувствует тепло.

Воздействие данного излучения благотворно сказывается на состоянии организма, при его воздействии осуществляется нормализация процессов обмена веществ. Резонансное его поглощение способствует активизации иммунитета и стимуляции жизненной активности на клеточном уровне.

Обогреватели инфракрасные вред или польза

Длинноволновые обогреватели широко используются для обогрева помещений любых назначений.

Как уже было сказано выше, инфракрасные обогреватели абсолютно безвредны и даже полезны! Благодаря столь полезному спектру воздействия ик излучения, популярность такого типа приборов растёт каждый год. Производства и модельный ряд инфракрасных обогревателей расширяется, появляются новые модели, новые марки. Что так же благоприятно сказывается и на качестве продукта. Так как конкуренция растёт пропорционально популярности “инфракрасников”, каждый хочет выделиться и сделать лучше. В настоящий момент производители готовы предложить огромный выбор приборов инфракрасного типа, и многие не могут подобрать себе необходимую модель обогревателя. Самые лучшие инфракрасные обогреватели потолочные производятся не только за рубежом, но и в России, причем, не по столь высоким ценам, что несомненно радует. Определиться с выбором и купить обогреватели вам помогут наши специалисты по телефону 983-77-20, звоните поможем! Климат в СПб

Инфракрасные лучи: свойства, области применения, влияние на человека. Источники инфракрасного излучения

Инфракрасные лучи – это электромагнитные волны в невидимой области электромагнитного спектра, которая начинается за видимым красным светом и заканчивается перед микроволновым излучением между частотами 10 12 и 5∙10 14 Гц (или находится в диапазоне длин волн 1–750 нм). Название происходит от латинского слова infra и означает «ниже красного».

Применение инфракрасных лучей разнообразно. Они используются для визуализации объектов в темноте или в дыму, отопления саун и подогрева крыльев воздушных судов для защиты от обледенения, в ближней связи и при проведении спектроскопического анализа органических соединений.

Открытие

Инфракрасные лучи были обнаружены в 1800 г. британским музыкантом и астрономом-любителем немецкого происхождения Уильямом Гершелем. Он с помощью призмы разделил солнечный свет на составляющие его компоненты и за красной частью спектра с помощью термометра зарегистрировал увеличение температуры.

ИК-излучение и тепло

Инфракрасное излучение часто называют тепловым. Следует, однако, отметить, что оно является лишь его следствием. Тепло – это мера поступательной энергии (энергии движения) атомов и молекул вещества. «Температурные» датчики фактически измеряют не тепло, а только различия в ИК-излучении различных объектов.

Многие учителя физики инфракрасным лучам традиционно приписывают всю тепловую радиацию Солнца. Но это не совсем так. С видимым солнечным светом поступает 50% всего тепла, и электромагнитные волны любой частоты при достаточной интенсивности могут вызвать нагрев. Однако справедливо будет сказать, что при комнатной температуре объекты выделяют тепло в основном в полосе среднего инфракрасного диапазона.

ИК-излучение поглощается и испускается вращениями и вибрациями химически связанных атомов или их групп и, следовательно, многими видами материалов. Например, прозрачное для видимого света оконное стекло ИК-радиацию поглощает. Инфракрасные лучи в значительной степени абсорбируются водой и атмосферой. Хотя они и невидимы для глаз, их можно ощутить кожей.

Земля как источник инфракрасного излучения

Поверхность нашей планеты и облака поглощают солнечную энергию, большую часть которой в виде ИК-радиации отдают в атмосферу. Определенные вещества в ней, в основном пар и капли воды, а также метан, углекислый газ, оксид азота, хлорфторуглероды и гексафторид серы, поглощают в инфракрасной области спектра и переизлучают во всех направлениях, в том числе на Землю. Поэтому из-за парникового эффекта земная атмосфера и поверхность намного теплее, чем если бы вещества, поглощающие ИК-лучи, в воздухе отсутствовали.

Это излучение играет важную роль в теплопередаче и является неотъемлемой частью так называемого парникового эффекта. В глобальном масштабе влияние инфракрасных лучей распространяется на радиационный баланс Земли и затрагивает почти всю биосферную активность. Практически каждый объект на поверхности нашей планеты испускает электромагнитное излучение в основном в этой части спектра.

Области ИК-диапазона

ИК-диапазон часто разделяется на более узкие участки спектра. Немецкий институт стандартов DIN определил такие области длин волн инфракрасных лучей:

  • ближний (0,75-1,4 мкм), обычно используемый в волоконно-оптической связи;
  • коротковолновой (1,4-3 мкм), начиная с которого значительно возрастает поглощение ИК-излучения водой;
  • средневолновой, также называемый промежуточным (3-8 мкм);
  • длинноволновый (8-15 мкм);
  • дальний (15-1000 мкм).

Однако эта схема классификации не используется повсеместно. Например, в некоторых исследованиях указываются следующие диапазоны: ближний (0,75-5 мкм), средний (5-30 мкм) и длинный (30-1000 мкм). Длины волн, используемые в телекоммуникации, подразделяются на отдельные полосы из-за ограничений детекторов, усилителей и источников.

Общая система обозначений оправдана реакциями человека на инфракрасные лучи. Ближняя ИК-область наиболее близка к длине волны, видимой человеческим глазом. Среднее и дальнее ИК-излучение постепенно удаляются от видимой части спектра. Другие определения следуют различным физическим механизмам (таким как пики эмиссии и поглощение воды), а самые новые основаны на чувствительности используемых детекторов. Например, обычные кремниевые сенсоры чувствительны в области около 1050 нм, а арсенид индий-галлия – в диапазоне от 950 нм до 1700 и 2200 нм.

Четкая граница между инфракрасным и видимым светом не определена. Глаз человека значительно менее чувствителен к красному свету, превышающему длину волны 700 нм, однако интенсивное свечение (лазера) можно видеть примерно до 780 нм. Начало ИК-диапазона определяется в разных стандартах по-разному – где-то между этими значениями. Обычно это 750 нм. Поэтому видимые инфракрасные лучи возможны в диапазоне 750–780 нм.

Обозначения в системах связи

Оптическая связь в ближней ИК-области технически подразделяется на ряд полос частот. Это связано с различными источниками света, поглощающими и передающими материалами (волокнами) и детекторами. К ним относятся:

  • О-диапазон 1,260-1,360 нм.
  • Е-диапазон 1,360-1,460 нм.
  • S-диапазон 1,460-1,530 нм.
  • C-диапазон 1,530-1,565 нм.
  • L-диапазон 1,565-1,625 нм.
  • U-диапазон 1,625-1,675 нм.

Термография

Термография, или тепловидение – это тип инфракрасного изображения объектов. Поскольку все тела излучают в ИК-диапазоне, а интенсивность радиации увеличивается с температурой, для ее обнаружения и получения снимков можно использовать специализированные камеры с ИК-датчиками. В случае очень горячих объектов в ближней инфракрасной или видимой области, этот метод называется пирометрией.

Термография не зависит от освещения видимым светом. Следовательно, можно «видеть» окружающую среду даже в темноте. В частности, теплые предметы, в том числе люди и теплокровные животные, хорошо выделяются на более холодном фоне. Инфракрасная фотография ландшафта улучшает отображение объектов в зависимости от их теплоотдачи: голубое небо и вода кажутся почти черными, а зеленая листва и кожа ярко проявляются.

Исторически термография широко использовалась военными и службами безопасности. Кроме того, она находит множество других применений. Например, пожарные используют ее, чтобы видеть сквозь дым, находить людей и локализовать горячие точки во время пожара. Термография может выявить патологический рост тканей и дефекты в электронных системах и схемах из-за их повышенного выделения тепла. Электрики, обслуживающие линии электропередач, могут обнаружить перегревающиеся соединения и детали, что сигнализирует о нарушении их работы, и устранить потенциальную опасность. При нарушении теплоизоляции специалисты-строители могут увидеть утечки тепла и повысить эффективность систем охлаждения или обогрева. В некоторых автомобилях высокого класса тепловизоры устанавливаются для помощи водителю. С помощью термографических изображений можно контролировать некоторые физиологические реакции у людей и теплокровных животных.

Внешний вид и способ работы современной термографической камеры не отличаются от таковых у обычной видеокамеры. Возможность видеть в инфракрасном спектре является настолько полезной функцией, что возможность записи изображений часто является опциональной, и модуль записи не всегда доступен.

Другие изображения

В ИК-фотографии ближний инфракрасный диапазон захватывается с помощью специальных фильтров. Цифровые фотоаппараты, как правило, блокируют ИК-излучение. Однако дешевые камеры, у которых нет соответствующих фильтров, способны «видеть» в ближнем ИК-диапазоне. При этом обычно невидимый свет выглядит ярко-белым. Особенно это заметно во время съемки вблизи освещенных инфракрасных объектов (например, лампы), где возникающие помехи делают снимок блеклым.

Также стоит упомянуть Т-лучевую визуализацию, которая представляет собой получение изображения в дальнем терагерцовом диапазоне. Отсутствие ярких источников делает такие снимки технически более сложными, чем большинство других методов ИК-визуализации.

Светодиоды и лазеры

Искусственные источники инфракрасного излучения включают, помимо горячих объектов, светодиоды и лазеры. Первые представляют собой небольшие недорогие оптоэлектронные устройства, изготовленные из таких полупроводниковых материалов, как арсенид галлия. Они используются в качестве оптоизоляторов и в качестве источников света в некоторых системах связи на основе волоконной оптики. Мощные ИК-лазеры с оптической накачкой работают на основе двуокиси и окиси углерода. Они используются для инициации и изменения химических реакций и разделения изотопов. Кроме того, они применяются в лидарных системах определения дистанции до объекта. Также источники инфракрасного излучения используются в дальномерах автоматических самофокусирующих камер, охранной сигнализации и оптических приборах ночного видения.

ИК-приемники

К приборам обнаружения ИК-излучения относятся термочувствительные устройства, такие как термопарные детекторы, болометры (некоторые из них охлаждаются до температур, близких к абсолютному нулю, чтобы снизить помехи от самого детектора), фотогальванические элементы и фотопроводники. Последние изготавливаются из полупроводниковых материалов (например, кремния и сульфида свинца), электрическая проводимость которых увеличивается при воздействии инфракрасных лучей.

Читайте также:  Укладка на пол фанеры. Укладка фанеры на бетонный пол: способы монтажа, материалы, советы мастеров

Обогрев

Инфракрасное излучение используется для нагрева – например, для отопления саун и удаления льда с крыльев самолетов. Кроме того, оно все чаще применяется для плавления асфальта во время укладки новых дорог или ремонта поврежденных участков. ИК-излучение может использоваться при приготовлении и подогреве пищи.

Связь

ИК-длины волн применяются для передачи данных на небольшие расстояния, например, между компьютерной периферией и персональными цифровыми помощниками. Эти устройства обычно соответствуют стандартам IrDA.

ИК-связь обычно используется внутри помещений в районах с высокой плотностью населения. Это наиболее распространенный способ дистанционного управления устройствами. Свойства инфракрасных лучей не позволяют им проникать сквозь стены, и поэтому они не взаимодействуют с техникой в соседних помещениях. Кроме того, ИК-лазеры используются в качестве источников света в оптоволоконных системах связи.

Спектроскопия

Инфракрасная радиационная спектроскопия – это технология, используемая для определения структур и составов (главным образом) органических соединений путем изучения пропускания ИК-излучения через образцы. Она основана на свойствах веществ поглощать определенные его частоты, которые зависят от растяжения и изгиба внутри молекул образца.

Характеристики инфракрасного поглощения и излучения молекул и материалов дают важную информацию о размере, форме и химической связи молекул, атомов и ионов в твердых телах. Энергии вращения и вибрации квантуются во всех системах. ИК-излучение энергии hν, испускаемое или поглощаемое данной молекулой или веществом, является мерой разности некоторых внутренних энергетических состояний. Они, в свою очередь, определяются атомным весом и молекулярными связями. По этой причине инфракрасная спектроскопия является мощным инструментом определения внутренней структуры молекул и веществ или, когда такая информация уже известна и табулирована, их количества. ИК-методы спектроскопии часто используются для определения состава и, следовательно, происхождения и возраста археологических образцов, а также для обнаружения подделок произведений искусства и других предметов, которые при осмотре под видимым светом напоминают оригиналы.

Польза и вред инфракрасных лучей

Длинноволновое ИК-излучение применяется в медицине с целью:

  • нормализации артериального давления путем стимуляции кровообращения;
  • очищения организма от солей тяжелых металлов и токсинов;
  • улучшения кровообращения мозга и памяти;
  • нормализации гормонального фона;
  • поддержания водно-солевого баланса;
  • ограничения распространения грибков и микробов;
  • обезболивания;
  • снятия воспаления;
  • укрепления иммунитета.

Вместе с тем ИК-излучение может нанести вред при острых гнойных заболеваниях, кровотечениях, острых воспалениях, болезнях крови, злокачественных опухолях. Неконтролируемое продолжительное воздействие ведет к покраснению кожи, ожогам, дерматиту, тепловому удару. Коротковолновые ИК-лучи опасны для глаз – возможно развитие светобоязни, катаракты, нарушений зрения. Поэтому для отопления должны применяться исключительно источники длинноволнового излучения.

Польза и вред инфракрасного излучения

Существуют природные явления, которые незаметны человеческому глазу, хотя мы чувствуем силу их действия. Они способны оказывать не меньшее влияние, чем видимые процессы. Мы не видим инфракрасные лучи, но можем чувствовать их тепло. Действие инфракрасного излучения благотворно для живых организмов на Земле и играет важную роль в развитии жизни. Все живое находится под влиянием инфракрасного света.

Особенность инфракрасного излучения в том, что без него в человеческом организме появляются разные болезни, ускоряется старение. Но в данном случае граница между пользой и вредом инфракрасного излучения для человека тонкая. Поэтому важно знать, как ее не перешагнуть и что предпринять, если инфракрасные лучи привели к негативным последствиям.

Что такое инфракрасное излучение?

Изучая в 1800 году Солнце, английский ученый У. Гершель измерял температуру различных участков видимого спектра. Им было обнаружено, что за насыщенным красным цветом находится высшая точка тепла. Тогда в науке и появилось понятие инфракрасного излучения (ИК-излучение).

Инфракрасные лучи недоступны невооруженному взору, но ощущаемы кожей как тепло. Они относятся к электромагнитному излучению, которое располагается между красным концом видимого света и микроволновым радиоизлучением. ИК-излучение еще принято называть тепловым.

Оно излучается атомами, которые обладают избыточной энергией, и ионами. Каждое тело с температурой выше нуля – это источник инфракрасного излучения. Солнце – известный природный источник ИК-лучей.

Длина волн в ИК-излучении зависит от температуры нагревания. Самая высокая температура у коротких волн с большой интенсивностью излучения. Диапазон инфракрасных лучей широк. Он делится на разновидности:

  • короткие волны – температура выше 800 градусов Цельсия,
  • средние волны – до 600 градусов Цельсия,
  • длинные волны – до 300 градусов Цельсия.

Влияние инфракрасного излучения на организм человека определяется длиной этих волн, а также временным отрезком воздействия.

Польза инфракрасных лучей для человека

Длинноволновые инфракрасные лучи благоприятны для здоровья человека. Это часто используется в медицине, в частности в физиотерапевтических процедурах, с помощью которых можно улучшить кровообращение, метаболизм и нейрорегуляцию.

Положительное влияние ИК-излучения на человеческий организм сказывается следующим образом:

  • улучшается память и функции мозга,
  • приводится в норму артериальное давление,
  • нормализируется гормональный баланс,
  • выводятся соли, токсины и тяжелые металлы,
  • останавливается размножение грибков и вредных микроорганизмов,
  • восстанавливается водно-солевой баланс,
  • происходит обезболивание,
  • происходит противовоспалительный процесс,
  • подавляются раковые клетки,
  • нейтрализуются результаты радиоактивного излучения,
  • повышается инсулин у больных диабетом,
  • излечивается дистрофия,
  • проходит псориаз,
  • укрепляется иммунитет.

Отопление, в котором используются ИК-лучи, убивает вредоносные бактерии и помогает укрепить иммунитет. Ионизирование воздуха защищает от аллергических проявлений. Длинные волны инфракрасного тепла действуют успокаивающе при усталости, раздражительности, стрессе, способствуют заживлению ран, приводят к выздоровлению при гриппе.

Вред от инфракрасного излучения

Несмотря на полезные свойства ИК-лучей у них существуют и противопоказания. Особую опасность представляют короткие волны. Их вред может выражаться в покраснении кожи и ожоге, тепловом ударе и дерматите, появлении судорог и нарушении водно-солевого баланса. Коротковолновое излучение особенно опасно для слизистой оболочки глаз. Оно не просто пересушивает ее, но и способно вызвать серьезные глазные недуги.

Коротковолновое действие на организм человека выражается в определенных признаках:

  • головокружение,
  • тошнота,
  • потемнение в глазах,
  • учащенное сердцебиение,
  • нарушение координации движений,
  • потеря сознания.

Такие симптомы возникают, если температура головного мозга повышается хотя бы на один градус Цельсия. При повышении на два градуса Цельсия – появляется менингит и энцефалит.

Противопоказаниями к применению инфракрасных лучей служат:

  • заболевания крови,
  • кровотечения,
  • островоспалительные процессы,
  • острые гнойные проявления,
  • злокачественные опухоли.

Где встречается инфракрасное излучение?

Инфракрасное излучение применяется в разных областях человеческой деятельности. Сюда относятся: термография, астрономия, медицина, пищевая промышленность и другие.

ИК-излучателями могут являться разные приборы:

  • головка самонаведения в прицельном устройстве,
  • приборы ночного видения,
  • оборудование для физиотерапии,
  • системы отопления,
  • обогреватели,
  • устройства с дистанционным управлением.

Любые нагретые тела – это источники инфракрасного излучения.

Что касается обогревателей, при их покупке стоит обратить внимание на характер излучения прибора, который обычно указывается в техническом паспорте. Если спираль, выделяющая тепло, имеет теплоизолирующую защиту, это значит, что действие ее длинных волн будет положительно сказываться на организме. Если же нагревательный элемент не изолирован, то устройство выделяет короткие волны, вызывающие проблемы со здоровьем.

Важно! Если прибор выделяет коротковолновое излучение, не находитесь возле него долго и держите его на расстоянии от себя.

Помощь пострадавшему от теплового удара

Влияние на человека инфракрасного тепла может привести к тепловому удару. При этом необходимо оказать пострадавшему следующие меры помощи:

  • поместить его в прохладное место,
  • высвободить от тесной одежды,
  • приложить холод на шею, голову, область сердца, позвоночник и паховые промежности,
  • обернуть человека в намоченную холодной водой простыню,
  • включить вентилятор и направить на пострадавшего воздух,
  • часто поить холодным,
  • провести искусственное дыхание, если возникла потребность,
  • вызвать скорую помощь.

Заключение

Понимая природу ИК-лучей, мы осознаем их незаменимость для жизни и нормального функционирования человеческого организма. Несмотря на пользу инфракрасного излучения для человека, оно может наносить и непоправимый вред, если действуют в коротковолновом диапазоне. Поэтому будьте осторожны, попадая под влияние инфракрасного света. Учитывайте противопоказания, которые к нему имеются. А если тепловой удар случился с кем-то из окружающих, окажите ему необходимую помощь.

Что такое ИК излучение

Инфракрасное излучение – это часть спектра светового излучения, которая способна нагревать предметы. Нужно отметить, что излучение в этом спектре недоступно невооруженному человеческому глазу, но человеческий организм способен ощущать его всем телом, принимая инфракрасную энергию как тепло, идущее от нагретого предмета. Волны, инфракрасного излучения, являются естественными и безопасными, излучаются любым теплым объектом.Человеческое тело тоже выделяет инфракрасное излучение – это тепловые инфракрасные волны – тепло.

Инфракрасное тепло отличается своей способностью проникновения в организм человека на глубину до 4 см, оказывая лечебное воздействие прогреванием тканей, органов, мышц, костей и суставов. При этом улучшается кровообращение человеческого организма, увеличивается обмен веществ, усиливается действие иммунной системы организма, улучшается питание тканей и органов.

Основные сведения об инфракрасном излучении:

Атмосфера Земли пропускает инфракрасную энергию в диапазоне приблизительно 7-14 мкм, когда Земля прогревается, то она излучает инфракрасные (ИК) лучи в полосе приблизительно 7-14 мкм с пиком 10 мкм. Инфракрасные волны по длине принято разделять на 3 диапазона: ближний (от видимого света) – 0,74-1 мкм, средний – 1,4-3 мкм и дальний – 3-50 мкм. Еще их называют короткими, средними и длинными волнами.

Воздействие инфракрасного и анионного излучения

Инфракрасные обогреватели работают в дальнем диапазоне инфракрасных волн в пределах 4 – 20 мкм. Данное излучение сопровождается так же анионным излучением.

Инфракрасное излучение имеет две важные характеристики:

– длину волны (частоту) излучения

По мнению сотрудников НИИ медицины труда при Академии наук России, инфракрасные лучи положительно действуют на организм, если длина ее волны не превышает длины волны, выделяемой самим человеком. Человек излучает инфракрасные волны в диапазоне от 2,5 до 25 мкм с пиком излучения на длине волны 9,3-10 мкм. Поэтому можно получить явление, называемое «резонансным поглощением», при котором внешняя энергия будет активно поглощаться телом.

Так как инфракрасное излучение с длинами волн примерно от 7 до 14 мкм проникает не только под кожу человека, но также и на клеточный уровень, запуская там ферментативную реакцию.

Читайте также:  Установка пандуса. Корректные размеры пандусов для инвалидов, а также требования ГОСТ

В результате этого воздействия повышается потенциальная энергия клеток организма, и из них будет уходить несвязанная вода, повышается деятельность специфических клеточных структур, расти уровень иммуноглобулинов, увеличивается активность ферментов и эстрогенов, происходить и другие биохимические реакции. Это касается всех типов клеток организма и крови.

Как и в случае с разной длиной волны, разные значения интенсивности опасны или благоприятны для человека. При воздействии потоков энергии интенсивностью 70-100 Вт/м2 в организме повышается активность биохимических процессов, что ведет к улучшению общего состояния человека в целом.

Лечебное воздействие инфракрасного излучения:

С помощью инфракрасного излучения с успехом лечат такие проблемы, как:

1. Нарушениях сердечнососудистой деятельности.

2. Заболевания почек.

3. Нарушения циркуляции крови.

4. Мышцы и суставы.

5. Простудные заболевания.

6. Мышцы и суставы.

7. Ухо, горло, нос.

8. Проблемы излишнего веса.

11. Расстройства нервной системы.

12. Иммунная система.

13. Травмы и послеоперационный период.

14. Нарушения пищеварения.

15. Косметические проблемы (угревая сыпь, прыщи, крапивная сыпь, перхоть, улучшается цвет лица, разглаживаются морщины).

Кроме того, ряд научных лабораторий США (Dr, Masao Nakamura «О&P Medical Clinik», Dr. Mikkel Aland «Infrared Therapy Researches» и др.) сообщают о полученных в ходе исследований эффектах дальнего инфракрасного излучения: 1. Подавление роста раковых клеток.

2. Уничтожение некоторых видов вируса гепатита.

3. Нейтрализация вредного воздействия электромагнитных полей.

4. Излечение дистрофии.

5. Повышение количества вырабатываемого инсулина у больных диабетом.

6. Нейтрализация последствий радиоактивного облучения.

7. Обращение цирроза печени.

8. Излечение или значительное улучшение состояния при псориазе.

Современные исследования в области биотехнологий показали, что именно дальнее инфракрасное излучение имеет исключительное значение в развитии всех форм жизни на Земле. По этой причине его называют также биогенетическими лучами или лучами жизни. Наше тело само излучает длинные инфракрасные волны, но оно само нуждается также и в постоянной подпитке длинноволновым теплом. Если это излучение начинает уменьшаться или нет постоянной подпитки им тела человека, то организм подвергается атакам различных заболеваний, человек быстро стареет на фоне общего ухудшения самочувствия.

Дальнее инфракрасное излучение нормализует процесс обмена и устраняет причину болезни, а не только её симптомы. Работы по изучению применения проникающего дальнего инфракрасного излучения продолжаются во всем Мире.

Анионное излучение (ионизация воздуха):

Анион (от греч. ana – вверх и ion – идущий), отрицательно заряженный ион в электрическом поле движется к положительному электроду – аноду.

Анионы оказывают благоприятное воздействие на человеческий организм (ионизация воздуха) анионы, соединяясь с кислородом воздуха, образуют ионизированный кислород, способный улучшить иммунные качества человеческого организма и предотвратить многие заболевания. Анионы очищают, стерилизуют воздух и придают ему антисептические качества. Функция генерации анионов (ионизации) автоматически включается при включении обогревателя.

Ионизация воздуха (приобретение воздухом электрических зарядов – аэроионов) – естественный процесс, происходящий в природе под действием различных природных факторов.

Лечебный эффект ионизации воздуха:

Ионизация воздуха необходима для создания в помещениях оптимальной концентрации отрицательно заряженных ионов, которые необходимы для нормальной жизнедеятельности организма. Лишенный ионов воздух – «мертвый», ухудшает здоровье и ведет к заболеваниям. Мы тяжело переносим скученность, места, где скапливается много народа. Человек выделяет с дыханием положительные ионы. Работающие электронагревательные приборы, экраны дисплеев и телевизоров так же вырабатывают положительные ионы. Это подтверждается многочисленными опытами А. Л. Чижевского и других ученых. А. Л. Чижевский доказал, что отрицательные ионы воздуха биологически благотворны, а положительные ионы оказывают вредное действие на организм.

Примеры природной ионизации воздуха:

Для сравнения – естественная концентрация отрицательных ионов на открытом воздухе 1000.. 10000 ионов/см3, а в помещении падает до 40.. 100 ионов/см3.

,p>Морской прибой. При разбрызгивании жидкости мелкие капельки ее заряжаются отрицательно и при испарении отдают свой заряд воздуху, происходит насыщение его отрицательными ионами.

В горах так же дышится легко. Там усилена ионизация за счет более сильного потока ультрафиолетовых лучей, не ослабленных атмосферой. Во время грозы так же происходит ионизация за счет электрических разрядов.

Ионизация воздуха уменьшает токсичность воздуха и очищает его от пыли, микробов. Взвешенные частицы загрязнений и пыли электризуются и оседают на потолок, стены, пол. Воздух очищается.

Если не вдаваться в подробности то можно сказать что воздействие дальнего диапазона инфракрасного излучения, в котором работают пленочные обогреватели, а так же анионного излучения оказывают следующее благотворное влияние на человека:

• Профилактика заболеваний верхних дыхательных путей и астмы.

• Благоприятное воздействие на животных и домашние растения.

• Нейтрализация неприятных запахов и табачного дыма.

• Профилактика сердечнососудистых заболеваний.

• Успокаивающее воздействие на нервную систему.

• Общеоздоравляющее воздействие на организм.

• Стимулирование обмена веществ в организме.

• Снижение высокого кровяного давления.

• Естественная дезодорация и антибиоз.

• Активизирование клеток в организме.

• Профилактика кожных заболеваний.

• Восстановление эластичности кожи.

• Уменьшение холестерина в крови.

Дезодорация — устранение дурных запахов, образующихся в результате гниения органических веществ.

Что такое инфракрасное излучение

Инфракрасное излучение или инфракрасные лучи, это электромагнитное излучение, занимающее спектральную область между красным света (с длиной волны 0,74 мкм) и коротковолновым радиоизлучением (1-2 мм).

Открытие инфракрасного излучения произошло в 1800 г.
Английский учёный В. Гершель обнаружил, что в полученном спектре Солнца за границей красного света (т.е. в невидимой части спектра) температура термометра повышается. Термометр, помещённый за красной частью солнечного спектра, показал повышенную температуру по сравнению с контрольными термометрами, расположенными сбоку.

Инфракрасную область спектра согласно международной классификации [18] разделяют:
– на ближнюю ИК-А (от 0.7 до 1.4 мкм);
– среднюю ИК-В (1.4 – 3 мкм);
– далёкую ИК-С (свыше 3 мкм).

Все нагретые твёрдые тела испускают непрерывный инфракрасный спектр. Это означает, что в излучении присутствуют волны со всеми без исключения частотами, и говорить об излучении на какой-то определенной волны, бессмысленное занятие. Нагретое твёрдое тело излучает в очень широком интервале длин волн.

При низких температурах (ниже 400°С) излучение нагретого твёрдого тела почти целиком расположено в инфракрасной области, и такое тело кажется тёмным. При повышении температуры доля излучения в видимой области увеличивается, и тело вначале кажется:

Белым разной яркости . 1200—1400°С

При этом возрастает как полная энергия излучения, так и энергия инфракрасного излучения. При температурах свыше 1000°С нагретое тело начинает испускать ультрафиолетовое излучение.

Законы теплового излучения

Особое место в теории теплового излучения занимает Абсолютно Черное Тело (АЧТ). Так Г.Кирхгоф назвал тело, у которого на всех частотах и при любых температурах поглощательная способность равна единице. Реальное тело всегда отражает часть энергии падающего на него излучения. Даже сажа приближается по свойствам к абсолютно черному телу лишь в оптическом диапазоне.

Абсолютно черное тело является эталонным телом в теории теплового излучения. И, хотя в природе нет абсолютно черного тела, достаточно просто реализовать модель, для которой поглощательная способность на всех частотах будет пренебрежимо мало отличаться от единицы. Ниже приведены законы справедливые для АЧТ.

Основной закон теплового излучения Планка устанавливает зависимость испускательной способности тела R от длины волны λ и температуры тела T.

Зависимость R от длины волны при постоянной температуре показана на рисунке. Мощность излучения имеет максимум при некотором значении λ max .

Хотя спектр изменяется с изменением температуры, он имеет общие закономерности, не зависящие от T, если выразить волны в безразмерной единице λ / λ max . Тогда доля излучаемой энергии в различных участках не зависит от температуры (доля в % от полной энергии приведена на рисунке). Полезно запомнить, что примерно 90% энергии приходится на спектральный интервал λ / λ max = 0,5 … 3,0 , т.е. от l max /2 до 3 l max .

Закон смещения Вина . Длина волны l max , соответствующая максимальной спектральной плотности излучательности АЧТ, обратно пропорциональная температуре: l max = 2.9 /T, где C – постоянная.

Закон Стефана-Больцмана. Излучательность АЧТ, т.е. полная мощность излучения с единичной площади, пропорциональна четвертой степени температуры: R= σT 4 , где σ – постоянная Стефана-Больцмана.

В теории теплового излучения часто пользуются идеализированной моделью реальных тел – понятием “серое тело”. Тело называется “серым”, если его коэффициент поглощения одинаков для всех частот и зависит только от температуры материала и состояния его поверхности. В действительности реальное физическое тело по своим характеристикам приближается к серому телу только в узком диапазоне частот излучения.

Закон теплового излучения Кирхгофа. Отношение спектральной плотности энергетической светимости тела к его монохроматическому коэффициенту поглощения не зависит от материала тела (т. е одинаково для всех тел) и равно спектральной плотности энергетической светимости абсолютно черного тела. Данная величина является функцией только температуры и частоты излучения.

Следствия закона Кирхгофа.

Так как коэффициент поглощения для любого тела меньше единицы, то испускательная способность любого тела для данной частоты излучения меньше таковой для черного тела. Иначе говоря, черное тело при любой температуре и частоте излучения является наиболее интенсивным источником излучения.

Если тело не поглощает излучения в какой-либо области спектра, то оно и не излучает в этой области спектра.

Для данной температуры сильнее излучают те серые тела, которые обладают большим коэффициентом поглощения.

И нтенсивность облучения от нагретой поверхности или через отверстие в печи можно определить по формуле (при L ≥F 0.5 )

E =0,91F((T/1000) 4 -A)/ L 2

где Е – интенсивность облучения, Вт/м2; F – площадь излучающей поверхности, м2; l – расстояние от центра излучающей поверхности до облучаемого объекта, м; A = 85 – для кожи человека и хлопчатобумажной ткани; А = 100- постоянный коэффициент для сукна.

Материалы этого сайта зарегистрированы и депонированы в РАО. © ООО “Юборг”, 2001-2019
Предложения по ценам не являются публичной офертой. Любое использование материалов с сайта запрещено без письменного разрешения правообладателя.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Remontpodomy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: