Что такое напор насоса. Давление насоса

Подача и Напор Насоса

Подача — Q [м³/ч] — объём воды, подаваемый насосом в единицу времени. Подача насоса определяется рабочей точкой на его характеристике и кроме конструктивных особенностей зависит от частоты вращения рабочего колеса и гидравлической характеристики сети.

Оптимальная подача насоса достигается при максимальном значении коэффициента полезного действия. Фактическую подачу насоса можно определить по напорно-расходной характеристике зная создаваемый напор.

Напор — H [м.вод.ст] — разница давлений между входным и выходным патрубком насоса. Напор насоса слагается из высот, которые необходимо преодолеть жидкости.

H = Hz + (Pв – Pн)/(ρg) + dh + (С²в – С²н)/(2g)

  • Hz – геометрическая высота подъёма, м равная разнице уровней поверхности жидкости в приёмном (верхнем) и подающем (нижнем) резервуарах.
  • (Pв – Pн)/(ρg) – высота, м, соответствующая разности давлений, Па в верхнем и нижнем резервуарах;
  • dh – сумма гидравлических потерь (на трение и в местных сопротивлениях) во всасывающем и напорном трубопроводах, м;
  • (С²в – С²н)/(2g) – высота, м, соответствующая разности кинетической энергии жидкости при скорости движения Св м/с на выходе из напорного трубопровода в верхний резервуар и при скорости Сн, м/c, на входе во всасывающий трубопровод из нижнего резервуара;
  • ρ – плотность жидкости
  • g – ускорение свободного падения, равное 9,8 м/с²

Если давление приложенное к поверхности жидкости в обоих резервуарах будет одинаковым, например, при открытых резервуарах, и жидкость в обоих резервуарах находится в состоянии покоя, тогда выражение определяющее напор насоса можно упростить:

Из выше приведенных выражений видно, что напор насоса поднимающего воду определяется, высотой подъёма и потерями напора в трубопроводах. В замкнутом циркуляционном кольце, (например системы отопления), напор насоса определяется суммой потерь напора на всех элементах кольца и не зависит от высоты системы и места установки насоса в ней.

Напорно-расходная характеристика — графическое отображение зависимости напора насоса от его подачи в координатах Q [м³/ч] / H [м.вод.ст]. Напорно-расходная характеристика, является основной характеристикой используемой для выбора насосов и приводится в каталогах производителей в виде графиков.

Рабочая точка насоса — точка на пересечении напорно-расходной характеристики с горизонтальной линией, проведённой с точки на оси ординат, которая соответствует развиваемому напору. Чтобы определить фактическую подачу насоса из рабочей точки опускают перпендикуляр на ось подачи (абсцисс).

Таким образом, подачу насоса определяет развиваемый им напор, который в повысительных насосах определяется высотой подъёма и потерями в трубопроводах, а в циркуляционных насосах — гидравлической характеристикой циркуляционного кольца. Так как, в циркуляционном кольце изменение потерь напора пропорционально квадрату изменения расхода проходящего через него, гидравлическая характеристика сети в координатах Q [м³/ч] / H [м.вод.ст], имеет вид параболы.

Высота всасывания — Нвс [м] — при условии забора воды из нижнего резервуара, в котором на зеркало воды действует атмосферное давление, высота всасывания насоса соответствует разнице уровней в метрах, между осью рабочего колеса и уровнем жидкости в нижнем резервуаре, за вычетом потерь напора в трубопроводе, который соединяет нижний резервуар и насос.

Подъём воды с нижнего резервуара происходит за счёт разницы давлений, при этом в рабочем колесе насоса создаётся разрежение, а на воду действует атмосферное давление. Так как атмосферному давлению соответствует столб воды высотою в 10,3 метра, а насос не может создать в рабочем колесе абсолютный вакуум — высота всасывания насоса не может превышать 8 метров.

Кавитационный запас — NPSH [м.вод.ст] — минимальное давление во всасывающем патрубке насоса обеспечивающее безкавитационную работу. Значение кавитационного запаса определяется опытным путём производителями насосов и приводится в виде графика в зависимости от подачи насоса.

Полезная мощность насоса — Nu [Вт] — соответствует энергии передаваемой жидкости в единицу времени.

Мощность на валу насоса — Nw [Вт] — механическая мощность, которая передаётся на вал насоса. Механическая мощность больше полезной, на величину гидравлических потерь и потерь на трение в рабочем колесе.

КПД насоса — η [%] — коэффициент полезного действия характеризующий степень совершенства центробежного насоса и определяется как отношение полезной мощности к мощности на валу.

Номинальный диаметр — DN — численное обозначение внутреннего диаметра присоединительных патрубков насоса общее для всех трубопроводных элементов. Номинальный диаметр насоса не имеет размерности, но его значение приблизительно равно внутреннему диаметру присоединяемого трубопровода.

Ряд условных проходов DN (Ду) трубопроводных элементов регламентирован ГОСТ 28338-89 «Проходы условные (размеры номинальные)». Альтернативным обозначением номинального диаметра DN, распространённым в странах постсоветского пространства, был условный диаметр.

Номинальное давление — PN [бар] — наибольшее избыточное давление воды с температурой в 20°C, при котором допускается длительная работа насоса.

Альтернативным обозначением номинального давления, распространённым в странах постсоветского пространства, было условное давление. Ряд номинальных давлений PN (Ру) трубопроводных элементов регламентирован ГОСТ 26349-84 «Давления номинальные (условные)».

Напор насоса

Содержание

Напор насоса – это давление, создаваемое рабочим органом насоса (лопастным колесом, мембраной или поршнем) по средствам передачи энергии от рабочего органа насоса (рабочего колеса, мембраны или поршня) к жидкости, т.е насос фактически толкает жидкость.

Напор: определение и характеристика

Напор является одной из основных характеристик насоса.

Напором называют приращение механической энергии, получаемой каждым килограммом жидкости, проходящей через насос, т.е. разность энергии при выходе из насос и при входе в него.

Физическую сущность напора легко понять вспомнив основы гидромеханики. Если к всасывающему патрубку насоса, берущего жидкость из ёмкости, расположенной выше его оси, подключить трубку полного напора, то уровень жидкости в ней будет поднят на некоторую высоту над осью насоса. Эта высота называется полным напором и определяется формулой

где р – давление в насосе
ρ – плотность среды
g – ускорение свободного падения

На бытовом уровне напором называют давление насоса. И для наглядности давление насоса – это высота, на которую насос может поднять столб жидкости.

Напор имеет линейную размерность – метр.

При подборе насоса напорная характеристика является одной из ключевых, ведь при недостаточном напоре, из крана не будет течь вода, а при слишком высоком напоре может не выдержать водопроводная трасса.

Напор и подача, которые создает насос взаимно связаны. Такую взаимосвязь графически изображают в виде кривой которая называется характеристика насоса. По одной оси графика откладывают напор(в метрах) по другой оси – подачу насоса(в м 3 /ч).

У каждого насоса – своя характеристика и заданная производителем рабочая точка. Рабочая точка – точка в которой уравновешены полезная мощность насоса и мощность потребляемая водопроводной сетью. По мере изменения подачи – меняется и напор.

При уменьшении подачи напор увеличивается, а при увеличении – уменьшается. Найти оптимальную рабочую точку – это основная задача при эксплуатации насоса.

Напор скважинного и погружного насоса

Расчет требуемого напора скважинного насоса определяется по формуле:

H = Hвысота + Hпотери + Hизлив , где

Hвысота – перепад высот между местом, где расположен насос и наивысшей точкой системы водоснабжения;

Hпотери – гидравлические потери в трубопроводе. Гидравлические потери в трубопроводе связаны с трением жидкости о стенки труб, падением давления на поворотах и других фитингах. Такие потери определяются по экспериментальным или расчетным таблицам.

Hизлив – свободный напор на излив, при котором удобно пользоваться сантехническими приборами. Данное значение необходимо брать в диапазоне 15 – 20 м, минимальное значение 5 м, но в этом случае вода будет подаваться тонкой струйкой.

Все описанные выше параметры измеряются в метрах.

Напор дренажного и поверхностного насоса

Поверхностный насос предназначен для подачи воды из неглубоких колодцев или скважин. Так же поверхностные самовсасывающие насосы используют для подачи воды из открытых источников или баков. Такие насосы располагаются непосредственно в помещениях, а в источник с водой проводят трубопровод.

1 Вариант: источник с водой расположен выше насоса. Например, какой-то бак или водонапорный резервуар на чердаке дома. Тогда напор насоса определяется по формуле:

H = Hвысота + Hпотери + Hизлив – Hвысота бака , где

Hвысота бака – расстояние (высота) между баком запаса воды и насосом

2 Вариант: насос расположен выше источника воды. Например, насос расположен в доме и тянет воду из колодца или скважины. Тогда напор насоса определяется по формуле:

H = Hвысота + Hпотери + Hизлив + Hисточник, где

Hисточник – расстояние (перепад высот) между источником воды (скважина, колодец) и насосом.

Напор циркуляционного насоса для отопления

Циркуляционные насосы используются в системах отопления домов, для обеспечения принудительной циркуляции теплоносителя. Расчет циркуляционного насоса – очень ответственная и сложная задача, которую рекомендуется отдать специализированным учреждениям, так как для расчетов необходимо знать точные теплопотери дома.

Напор циркуляционного насоса для отопления зависит не от высоты здания, а от гидравлического сопротивления трассы.

H = (R * L + Zсумма) / ( p * g ) , где

R – потери на трение в прямом трубопроводе, Па/м. По результатам опытов сопротивление в прямом трубопроводе равно 100 – 150 Па/м.

L – общая длина трубопровода, м.

Zсумма – коэффициенты запаса для элементов трубопровода

Z = 1,3 – для фитингов и арматуры;

Z = 1,7 – для термостатических вентилей;

Z = 1,2 – для смесителей или кранов, предотвращающих циркуляцию.

p – плотность перекачиваемой среды. Для воды = 1000 кг/м3

g – ускорение свободного падения, 9,8 м/с2.

Как видите определить требуемый именно Вам напор не составит большого труда, если отнестись к этой задаче с требуемым терпением и вниманием.

Способы увеличения напора насоса

Смонтировать насос, что может быть проще? Подключаем трубу к всасывающему патрубку, другую к напорному, подаем питание и вот можно пожинать плоды работы.

Давайте рассмотрим самые частые ошибки монтажа, устранение которых способствует увеличению напора насоса

С первого взгляда монтаж не представляет из себя трудоемкий процесс, но если заглянуть глубже, то следует учесть ошибки, которые способны значительно сократить срок службы оборудования.

Читайте также:  Установка теплого пола. Установка теплого пола своими руками – правила монтажа

Наиболее распространенные ошибки монтажа:

диаметр трубопровода меньше диаметра всасывающего патрубка насоса. В этом случае увеличивается сопротивление во всасывающей магистрали, а как следствие уменьшение глубины всасывания насоса. Уменьшенный, по сравнению со всасывающим патрубком насоса, трубопровод не в состоянии пропустить тот объем жидкости на который рассчитан насос.

подключение к всасывающей ветке обычного шланга. Этот вариант не настолько критичен, при условии размещения насоса небольшой производительности в нижней точке трассы. В других случаях насос за счет разряжения во всасывающей полости, создаваемого рабочим колесом, сожмет шланг, значительно уменьшив его сечение. Подача насоса значительно уменьшится, а может и совсем прекратиться.

Если вы решили подключить шланг к высокопроизводительному насосу, воспользуйтесь советом производителей насосов – используйте только гофрированный шланг

провисание трубы на горизонтальном участки или уклон в сторону от насоса на стороне всасывающего участка. При работе центробежного насоса необходимо, чтобы рабочее колесо постоянно работало в воде, т.е. рабочая камера насоса должна быть заполнена перекачиваемой средой. При провисании трубопровода или при отрицательном уклоне труб, жидкость из рабочей камеры выключенного насоса будет стекать в самую низкую точку трассы, а рабочее колесо будет крутиться в воздухе. Таким образом не будет движение среды в трубопроводе, а значит напор упадет до 0.

большое число поворотов и изгибов в трубопроводе. Такой вариант монтажа приводит к увеличению сопротивления, а следовательно к уменьшению производительности

плохая герметичность на всасывающем участке трубопровода. Плохая герметичность приводит к подсасыванию воздуха из окружающей среды в трубопровод, снижению напора и излишнему шуму при работе насоса.

В случае определения напора насоса необходимо помнить, что 1 метр напора, который насос создает в вертикальной трассе, равен 10 метрам по горизонтали. Например, если в горизонтальной трассе насос создает напор равный 30 метрам, то максимальный напор этого же насоса в случае монтажа в вертикальную трассу составит 300 метров

Характеристики насосов – подача, напор и рабочая точка

Определение понятия напора
Повышение давления насосом называется напором. Под напором насоса (H) понимается удельная механическая работа, передаваемая насосом перекачиваемой жидкости.

H = E/G [m]

E = механическая энергия [Н•м]
G = вес перекачиваемой жидкости [Н]

При этом напор, создаваемый насосом, и расход перекачиваемой жидкости (подача) зависят друг от друга. Эта зависимость отображается графически в виде характеристики насоса. Вертикальная ось (ось ординат) отражает напор насоса (H), выраженный в метрах [м]. Возможны также другие масштабы шкалы напора. При этом действительны следующие соотношения:

10 м в.ст. = 1 бар = 100 000 Па = 100 кПа

На горизонтальной оси (ось абсцисс) нанесена шкала подачи насоса (Q), выраженной в кубометрах в час [м3/ч]. Возможны также другие масштабы шкалы подачи, например [л/с]. Форма характеристики показывает следующие виды зависимости: энергия электропривода (с учетом общего КПД) преобразуется в насосе в такие формы гидравлической энергии, как давление и скорость. Если насос работает при закрытом клапане, он создает максимальное давление. В этом случае говорят о напоре насоса H0 при нулевой подаче.

Когда клапан начинает медленно открываться, перекачиваемая среда приходит в движение. За счет этого часть энергии привода преобразуется в кинетическую энергию жидкости. Поддержание первоначального давления становится невозможным. Характеристика насоса приобретает форму падающей кривой. Теоретически характеристика насоса пересекается с осью подачи. Тогда вода обладает только кинетической энергией, то есть давление уже не создается. Однако, так как в системе трубопроводов всегда имеет место внутреннее сопротивление, в реальности характеристики насосов обрываются до того, как будет достигнута ось подачи.

– Характеристики насосов
– Различная крутизна при идентичном корпусе и рабочем колесе насосов (например, в зависимости от частоты вращения мотора)

Форма характеристик насоса
На рисунке показана различная крутизна характеристик насоса, которая может зависеть, в частности, от частоты вращения мотора.

Различное изменение подачи и давления

При этом крутизна характеристики и смещение рабочей точки влияет также на изменение подачи и напора:
• пологая кривая
– большее изменение подачи
при незначительном изменении напора
• крутая кривая
– большое изменение подачи
при значительном изменении напора

Характеристика насосной системы

Трение, имеющее место в трубопроводной сети, ведет к потере давления перекачиваемой жидкости по всей длине. Кроме этого, потеря давления зависит от температуры и вязкости перекачиваемой жидкости, скорости потока, свойств арматуры и агрегатов, а также сопротивления, обусловленного диаметром, длиной и шероховатостью стенок труб.
Потеря давления отображается на графике в виде характеристики системы. Для этого используется тот же график, что и для характеристики насоса.

Форма характеристики показывает следующие зависимости:

Причиной гидравлического сопротивления, имеющего место в трубопроводной сети, является трение воды о стенки труб, трение частиц воды друг о друга, а также изменение направления потока в фасонных деталях арматуры.
При изменении подачи, например, при открывании и закрывании термостатических вентилей, изменяется также скорость потока и, тем самым, сопротивление.
Так как сечение труб можно рассматривать как площадь живого сечения потока, сопротивление изменяется квадратично. Поэтому график будет иметь форму параболы. Эту связь можно представить в виде следующего уравнения:

H1/H2 = (Q1/Q2) 2

Выводы
Если подача в трубопроводной сети уменьшается в два раза, то напор падает на три четверти. Если, напротив, подача увеличивается в два раза, то напор повышается в четыре раза. В качестве примера можно взять истечение воды из отдельного водопроводного крана.
При начальном давлении 2 бара, что соответствует напору насоса прим. 20 м, вода вытекает из крана DN 1/2 с расходом 2 м3/ч.
Чтобы увеличить подачу в два раза, необходимо повысить начальное давление на входе с 2 до 8 бар.

Изменяющаяся рабочая точка

Рабочая точка

Точка, в которой пересекаются характеристики насоса и системы, является рабочей точкой системы и насоса. Это означает, что в этой точке имеет место равновесие между полезной мощностью насоса и мощностью, потребляемой трубопроводной сетью. Напор насоса всегда равен сопротивлению системы. От этого зависит также подача, которая может быть обеспечена насосом.

При этом следует иметь в виду, что подача не должна быть ниже определенного минимального значения. В противном случае это может вызвать слишком сильное повышение температуры в насосной камере и, как следствие, повреждение насоса. Во избежание этого следует неукоснительно соблюдать инструкции производителя.

Рабочая точка за пределами характеристики насоса может вызвать повреждение мотора. По мере изменения подачи в процессе работы насоса также постоянно смещается рабочая точка. Найти оптимальную расчетную рабочую точку в соответствии с максимальными эксплуатационными требованиями входит в задачи проектировщика.

Такими требованиями являются:
для циркуляционных насосов систем отопления — потребление тепла зданием,
для установок повышения напора — пиковый расход для всех мест водоразбора.
Все остальные рабочие точки находятся слева от данной расчетной рабочей точки.

На двух рисунках показано влияние изменения гидродинамического сопротивления на смещение рабочей точки. Смещение рабочей точки по направлению влево от расчетного положения неизбежно вызывает увеличение напора насоса. В результате этого возникает шум в клапанах. Регулирование напора и подачи в соответствии с потребностью может производиться применением насосов с частотным преобразователем. При этом существенно сокращаются эксплуатационные расходы.

Как легко рассчитать напор и производительность насоса

Упрощенный расчет напора и производительности насоса

В данной статье мы остановимся на упрощенном расчете напора и производительности.

Напор, создаваемый насосом должен складываться из трех важных значений:

1. При определении требуемого напора насоса нужно помнить, что 1 метр напора по вертикали примерно равен 10 метрам напора по горизонтали (на самом деле на данное отношение влияет множество факторов).

Если в характеристиках насоса написано, что максимальный напор при нулевой производительности достигает Hmax = 48 метров, то значит, что по вертикали данный насос поднимет воду на высоту 48 метров или при нулевой высоте подъема он сможет доставить воду примерно на 480 метров по горизонтали (но при этом вода будет вытекать слабой струйкой).

Например, вы устанавливаете насос в подвале дома или гаража, находящемся на 3 метра ниже уровня земли. До входа системы водоснабжения в одноэтажный дом, куда подается вода — 20 метров. Значит, Вам необходим насос с напором свыше 5-ти метров при определенной производительности:

Но для нормальной работы системы водоснабжения Вам нужен насос с определенными напором и производительностью.

Вы спросите: «Почему при определенной производительности?»

Ответ: «Вам нужно, чтобы вода из шланга или крана не капала (а на насосе указан максимальный напор при нулевой производительности, либо наоборот), а вытекала с производительностью, достаточной для удаления воды из емкости. Для бытовых целей производительности насоса хватит, если максимальный напор, создаваемый насосом (указан в характеристиках насоса) превышает расчетный на 3 метра. В данном случае 8 метров. Опять-таки, не стоит забывать, что в ряде случаев необходим запас по напору, определяющему производительность насоса, то есть напор должен быть существенно больше.

Более точные расчеты напора и производительности насоса в зависимости от сложности системы трубопроводов, дальности перемещения воды и высоты подъема определяется по специальным диаграммам, таблицам или для сложных условий работы системы водоснабжения производятся сложнейшие расчеты, в которых с определенной степенью погрешности учитываются все параметры и характеристики системы.

2. Давление, рекомендуемое (необходимое) в точке потребления, как правило, для всех потребителей бытового назначения, должно быть от 1,5 до 3,0 бар (bar), что соответствует напору от 15-ти до 30-ти метров Hпотр = (15 . 30) м.

3. Расчетный напор насоса до основных точек потребления (например, до входа системы водоснабжения в одноэтажный дом):

Где: Нрасч — расчетный напор, создаваемый насосом, м;

Hгео — геодезическая высота подъёма воды (расстояние по вертикали от места установки насоса до наиболее высокорасположенного потребителя), м.

Читайте также:  Установка деревянных евроокон. Деревянные евроокна: преимущества, особенности конструкции и установки

Hпотр — напор, который необходимо создать в самой удаленной точке и высоко расположенной точке потребления, м.

Hпот — суммарное гидравлическое сопротивление по всей длине Lтр всасывающего и нагнетательного трубопроводов (суммарные потери напора).**

Чем выше температура воды, тем меньше высота всасывания, и практически при + 65-ти градусах Цельсия (°С) забор воды становится невозможен.

Обычно геометрическая высота всасывания для центробежных насосов составляет не более 5-ти, 7-ми метров и лишь для некоторых типов насосов она доходит до 9-ми метров.

**Точный расчет суммарных гидравлических потерь напора по всей длине Lтр трубопроводов и элементах инсталляционной аппаратуры, элементах управляющей автоматики и т.д. крайне сложен – приходится учитывать очень большое количество факторов.

Для крайне приблизительных и упрощенных расчетов зачастую достаточно принимать, что для горизонтального участка трубопровода длиной 100 метров разница между напором на входе и выходе с учетом потерь напора условно принимаем снижение напора на 10 м, что соответствует падению давления около 1 бар (bar).

Упрощенный пример расчета на уровне «двух пальцев» (за основу взят погружной насос).

а) Приведем пример или задачу:

Длина трубы 25 метров в высоту (от динамического уровня воды до дальней точки потребления). Какой нам нужен напор насоса, чтобы вода достигла точки потребления?

Решение очень простое — нам нужен напор, равный высоте от динамического уровня воды до точки потребления, то есть 25 метров!

Обратите внимание! В задаче указано, что вода должна достигнуть точки потребления, а не литься из трубы фонтаном.

б) Если Вы хотите понять: «Как найти величину напора, чтобы на выходе в точке потребления вода выходила фонтаном?» — решим следующую задачу.

Расстояние от уровня воды до точки потребления составляет 35 метров в высоту. Какой нам нужен напор насоса, чтобы вода выходила из трубы фонтаном или как минимум превысила высоту точки потребления? Решение тоже очень простое! Необходимо, чтобы у насоса высота напора была выше 35 метров!

Но нам необходимо рассчитать напор, достаточный для системы водоснабжения, чтобы на выходе из последней точки потребления создавался минимальный стандартный напор по водопотреблению.

Задача: Длина трубы по вертикали от уровня воды до точки потребления 35 метров. Какой нам нужен напор насоса, чтобы на выходе трубы (или другими словами в точке потребления) создать напор, равный 30 метрам?

Решение: Необходимо, чтобы у насоса был напор, равный 65 метрам! Эта цифра получена путем сложения двух данных: 35 м (длина трубы по вертикали от уровня воды до точки потребления) + 30 м (стандартный, рекомендованный в точке потребления напор – детальнее указано выше) = 65 метров.

4. Потери создаваемого напора — потери напора, снижение давления между входом и выходом элемента конструкции гидросистемы, к которым относятся трубопроводы, арматура, электронасосы, элементы управляющей автоматики и т.д.

Потери напора, создаваемого насосом при перекачивании жидкости, зависят от:

материала, из которого изготовлены элементы трубопроводов;

геометрических характеристик трубопроводов (длины, диаметров, углов изгибов используемых переходников, отводов и т.д.);

наличия клапанов, фильтров (как грубой, так и тонкой очистки), изгибов, приспособлений и других вспомогательных устройств;

фактического технического состояния гидросистемы, в том числе степени шероховатости внутренних поверхностей;

вязкости перекачиваемой жидкости.

Потери создаваемого напора можно приблизительно рассчитать по таблицам, в которых указываются значения уменьшения напора, выраженного в метрах водяного столба.

С учетом того, что:

Нужно при любых расчетах привести все величины к одним единицам измерений.

Заметно снизилось (уменьшилось) давление в системе водоснабжения — попробуем найти причину — обоснуем необходимость замены труб, элементов трубопровода или существующего насоса, а затем изменим внутренний диаметр (следовательно, увеличим сечение трубы) и тип материала, из которого изготовлены трубы системы водоснабжения, или существующий насос.

1) Система водоснабжения была смонтирована из стальных оцинкованных труб с внутренним диаметром d1 = 25 мм.

2) Для перекачивания жидкости в системе водоснабжения применяется условный центробежный насос с производительностью Q = 4,0 м 3 /ч.

3) Общая длина трубопроводов составляет L = 100 м.

4) Для наглядности и упрощения примера не берём во внимание количество и углы изгибов используемых переходников, отводов — считаем только потери напора по длине прямого трубопровода (что имеет мало общего с реальной жизнью, так как в действительности любая система водоснабжения состоит из всевозможных изгибов, переходников, штуцеров, различных элементов запорной арматуры, в том числе кранов, вентилей; о действительном состоянии внутренних стенок стальных труб после определенного срока мы умышленно умалчиваем!).

На сколько изменится создаваемый напор, если при реконструкции системы водоснабжения взамен демонтированных стальных труб будут использоваться трубы из ПХВ с внутренним диаметром

1) По ниже приведенной таблице потерь напора определяем потерю напора при длине L = 100 м трубопровода и производительности Q = 4,0 м 3 /ч для труб из ПХВ с внутренним диаметром d1 = 25 мм.

2) Внизу таблицы в примечании указано, что полученное значение потерь давления для стальных оцинкованных труб нужно умножить на поправочный коэффициент k = 1,5. В результате получим значение потерь давления:

h2 = 21,5 м × 1,5 = 32,25 м (м.в.ст.), что примерно соответствует уменьшению давления на величину: ∆P2 = 3,23 бар (bar). (Это результат на условном трубопроводе длиной 100 метров!)

4) После замены стальных оцинкованных труб с внутренним диаметром d1 = 25 мм на трубы из ПХВ с внутренним диаметром d2 = 38 мм, при одинаковой длине трубопровода L = 100 м и при той же производительности Q = 4,0 м 3 /ч условного насоса (по условию задачи насос не меняли!) получили меньшие потери напора и давления:

Вывод: поменяем трубы для системы водоснабжения, а не насос (насос не «виноват»)!

Таблица расчета потерь напора (в метрах водяного столба) для труб из ПХВ и полипропилена в зависимости от производительности, длины и диаметра трубопровода. (Все числовые значения потерь напора, приведенные в таблице, являются экспериментально установленными, так как не существует простых формул для расчета потерь!)


Таблица расчета потерь напора (в метрах водяного столба) для стальных труб при перекачивании сточных вод в зависимости от производительности, длины и диаметра трубопровода. (Все числовые значения потерь напора, приведенные в таблице, являются экспериментально установленными, так как не существует простых формул для расчета потерь!)


Расчет производительности следует производить по двум основным значениям:

1. Расход в точке потребления.

2. Потери производительности по длине трубопровода от насоса до точки потребления.

Что касается расхода потребления воды, то тут примерно есть приблизительно готовый цифровой стандарт.

Примерный расход воды из потребителей:

умывальник — 6 л/мин;

посудомоечная машина — 8 л/мин;

поливочный кран — 18 л/мин;

стиральная машина — 10 л/мин;

бассейн — 15 л/мин;

полив газонов и цветников требует до 6 л/мин воды на один м 2 , расход при этом зависит также от способа орошения и интенсивности полива;

сауна или баня потребует около 16 л/мин .

На практике обычно считается расход из одного открытого крана равен 10 литрам/минуту.

Возьмем для примера смеситель в ванной. По опыту для комфортного использования смесителя необходимо, чтобы расход воды на выходе примерно равнялся 15 литрам в минуту. Эту величину и возьмем для стандарта по подбору расхода в данной задаче.

Но ведь у нас не одна точка водоразбора, тогда необходимо рассчитать общий поток для всех точек потребления. Соответственно расход всех точек потребления необходимо суммировать и найти максимальный показатель расхода.

Предположим, у нас имеется две ванны и кухня. И представим, к примеру, что в первой ванной работает душ, во второй — непосредственно смеситель и стиральная машина, на кухне открыт кран и работает посудомоечная машина.

Суммируем расходы из всех точек потребления 10 + 15 + 10 + 6 + 8 = 49 литров в минуту — получили наш расход из пяти основных потребителей.

Можем подбирать необходимую производительность насоса с учетом примерного расхода.

Важно! При расчете максимальной производительности (объемной подачи) насоса или при установке насоса повышения давления необходимо брать запас не менее (40 … 50) % от суммарного максимально возможного водопотребления.

Важно! При расчете фактической производительности (объемной подачи) насоса необходимо учитывать, что все потребители в системе водоснабжения никогда не работают одновременно, соответственно клиент может взять поправочный коэффициент (коэффициент запаса по производительности), равным kзап = 0,8 … 0,9 = (80 … 90) % от суммарного максимально возможного водопотребления.

Что такое напор насоса. Давление насоса

Подача (производительность) – это количество жидкости, перемещаемое насосом за единицу времени.

Подача может быть выражена по-разному:
Q – объемная подача, [м 3 /c];
G – массовая подача, [кг/c].

Между массовой и объемной подачей есть взаимосвязь:

(1)

где r – плотность перекачиваемой жидкости, [кг/м 3 ].

Подача насоса зависит от его конструкции, скорости вращения рабочего колеса, вязкости жидкости и характеристики трубопровода, по которому насос перемещает жидкость.

Измерить подачу насоса можно различными приспособлениями:

  • ротаметром,
  • диафрагмой с подключенным дифманометром.
    Для измерения подачи используются также автоматические приборы, передающие информацию о подаче на ЭВМ в форме электрического сигнала.

    Одной из важнейших задач, которые приходится решать при эксплуатации центробежного насоса, является регулирование его подачи. Наибольшее распространение на практике получили следующие способы регулирования подачи:

  • задвижкой на напорном трубопроводе
  • байпасированием
  • изменением числа оборотов вала рабочего колеса

    Напор насоса – это энергия, которую получает объем жидкости весом в 1 Ньютон при прохождении через насос.

    Обозначается напор H и измеряется в метрах столба рабочей (перекачиваемой) жидкости, [м]. Напор можно рассматривать и с геометрической точки зрения как высоту, на которую может быть поднят 1 Ньютон жидкости за счет энергии, вырабатываемой насосом.

    Зависимость напора центробежного насоса от его объемной подачи изображают в виде графика, который называется напорной характеристикой насоса.

    Напорная характеристика зависит от конструкции насоса (модели), скорости вращения рабочего колеса и вязкости перекачиваемой жидкости. Напорная характеристика насоса дает представление о возможностях данного насоса.

    Для отображения этого элемента необходимо установить плагин AdobeSVGViewer3

    Напорные характеристики насосов представляют в справочниках и каталогах насосного оборудования.
    Хочется заострить внимание на том, что напорная характеристика насоса не зависит от плотности перекачиваемой жидкости, но зависит от вязкости жидкости. Чем больше вязкость жидкости, тем ниже располагается напорная характеристика. В справочниках приводятся напорные характеристики насосов для перекачки воды, поэтому, если необходимо перекачивать жидкость, имеющую вязкость, сильно отличающуюся от вязкости воды, то характеристику, взятую из справочника, нужно пересчитать (перестроить) по определенной методике. Методика, по которой выполняется пересчет напорной характеристики на другую вязкость приведена здесь.

    Напорную характеристику можно получить только при испытании реального насоса. Обычно испытывают насос при какой-либо скорости вращения рабочего колеса, перекачивая воду, и находят напор по показаниям измерительных приборов (формула 2 или 3), при различных подачах данного насоса.

    Формулы напора

    Для лучшего понимания рекомендуется сначала обратиться к разделу Трубопроводная сеть
    Определение напора на работающей насосной установке осуществляют по показаниям манометра и вакууметра:

    (2)

    где Pм – показания манометра, [Па]; Pв – показания вакууметра, [Па]; g=9,8 – ускорение свободного падения [м/с 2 ]; z – расстояние по вертикали между точками подключения манометра и вакууметра, [м]; dвс – диаметр всасывающего трубопровода, [м]; dн – диаметр напорного трубопровода, [м]; Q – подача насоса, [м 3 /с], измеренная каким-либо методом (см пункт “подача”).
    Если диаметры всасывающего и напорного трубопроводов одинаковы, а z намного меньше, чем слагаемое , то формула упрощается:

    (3)

    Если для нахождения напора используется формула (2) или (3), то говорят, что напор определяется опытным путем. Формулы (2) и (3) пригодны для определения напора, если перед насосом получается разрежение. Потренероваться в определении напора можно зайдя по этой ссылке. Если же перед насосом действует избыточное давление, то для определения напора нужно использовать методику, описание которой приводится в этой ссылке.
    Следующая формула используется, когда проектируется насосная установка и известны ее параметры.

    (4)

    где Hг – геометрический напор, [м]; P1, P2 – давления в расходном и приемном резервуарах, [Па]; λвс, λн – коэффициенты трения во всасывающем и напорном трубопроводах; lвс, lн – длины всасывающего и напорного трубопроводов, [м]; ξвс, ξн – коэффициенты местных сопротивлений всасывающего и напорного трубопроводов.
    Для нахождения напора по этой формуле, нужно задаться численным значением подачи жидкости в данной насосной установке.

    Напор, найденный по формуле (4) называют потребным напором, то есть напором, который требуется создать с помощью насоса для обеспечения заданной подачи жидкости насосной установкой.

    Вообще, формула (4) является математическим выражением напорной харатеристики трубопроводной сети. Смысл этой формулы рассмотрен в разделе Напорная характеристика сети.

    Полезная мощность – это энергия, отдаваемая жидкости за единицу времени при работе насоса.

    Полезная мощность обозначается Nп, измеряется в СИ в Ваттах [Вт].
    Полезную мощность можно определить по формуле:

    Общий к.п.д. (коэффициент полезного действия) насоса – это отношение полезной мощности к мощности на валу.

    (6)

    Общий к.п.д. выражает, какая доля потребляемой насосом энергии преобразуется в полезную энергию. Полезная энергия – это энергия, отдаваемая жидкости. Потребляемая энергия – это энергия, затрачиваемая двигателем при вращении рабочего колеса насоса. Полезная энергия меньше, чем потребляемая, так как в процессе преобразования энергии, осуществляемого центробежным насосом, часть энергии неизбежно теряется. К.п.д. насоса оценивает его энергетическое совершенство. Чем больше к.п.д. насоса, тем эффективней он использует потребляемую энергию.

    Зависимость общего к.п.д. насоса от подачи определяется конструкцией насоса, скоростью вращения его рабочего колеса и вязкостью перекачиваемой жидкости.

    Мощность на валу – это энергия, потребляемая насосом за единицу времени.

    Другими словами, мощность на валу – это энергия, передаваемая валу рабочего колеса от электродвигателя.
    Обозначается мощность на валу Nв, измеряется в СИ в Ваттах – [Вт].
    Мощность на валу и полезная мощность связаны соотношением:

    (7)

    Или в развернутом виде:

    Мощность на валу является важным параметром, дающим представление об энергопотреблении работающего насоса.

    Характер зависимости мощности на валу от подачи определяется не только конструкцией насоса и скоростью вращения его рабочего колеса, но и плотностью перекачиваемой жидкости, причем чем больше плотность, тем больше мощность на валу при прочих одинаковых условиях

    Типичная для центробежного насоса зависимость мощности на валу от подачи представлена на рисунке. В общем, при увеличении подачи потребляемая мощность растет.

    Подобные графические характеристики представлены в каталогах и справочниках насосного оборудования. Однако следует иметь в виду, что эти характеристики относятся к перекачке воды, поэтому для определения действительной мощности, потребляемой насосом при перекачке жидкости, плотность которой отлична от плотности воды, нужно выполнить пересчет:

    (9)

    где – мощность, потребляемая при перекачке жидкости; – мощность для перекачки воды, определенная по графическим характеристикам; – плотность воды; – плотность перекачиваемой жидкости.

    Допустимая высота всасывания

    Прежде чем говорить о допустимой высоте всасывания, необходимо сначала разобраться, что называют высотой всасывания. Следующий рисунок поясняет смысл этого термина.

    Для отображения этого элемента необходимо установить плагин AdobeSVGViewer3 с сайта http://www.adobe.com/svg/viewer/install/

    Высотой всасывания называют расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса.

    Допустимая высота всасывания – это максимальное расстояние по вертикали от уровня жидкости в расходном резервуаре до всасывающего патрубка насоса, при котором не возникает кавитации.

    Давление насоса

    Давление насоса. Теория и практика

    Многие очень смутно представляют практическую работу того или иного типа насосов в зависимости от их классификации. Но это дело вполне разрешимое, если ознакомиться со статьями, расположенными в подразделе сайта интернет-гипермаркета NASOSOV.BY «Статьи», которые конкретно рассказывают, на каком принципе работают те или иные типы насосов: « Классификация насосов согласно их конструкции », «Насос. Объемные насосы», «Насос. Динамические насосы (продолжение)».

    Теперь попробуем рассказать, что такое давление, создаваемое насосом. Практически, объясним, что такое напор, который может создать агрегат на выходе и на что он влияет.

    Что такое давление и напор, которые может создать насос

    При своей работе насос создает прирост удельной энергии жидкости, которую он перекачивает, другими словами потенциальную энергию, относительно к 1 кГ массы воды.

    Полная ее величина для полного объема раствора при входе в агрегат зависит от входного сечения трубопровода приемника «S1», удельной плотности потока «p» и скорости прохождения потока «v». Тогда, если сечение взять за величину центра сечения трубопровода Z1формулу удельной энергии на входе в насос: Э1 = Z1g + p1/q +v12/2 .

    Теперь выведем формулу удельной энергии потока на выходе из насоса при сечении трубопровода S2, тогда при аналогичных данных, как для сечения 1-1 получим: Э2 = Z2g + p2/q +v22/2 , соответственно легко вычислить прирост энергии потока при работе насоса:

    Э2 – Э1 = p/q = (Z2 – Z1)g + (p2 – p1)/q + (v22 – v12)/2 и вот получаем формулу давления насоса «Р»: p = (Z2 – Z1)gq + (p2 – p1) + q(v22 – v12)/2

    Теперь можем показать формулу от понятия «напор жидкости», в каждом сечении трубы (на входе в насос и на выходе из него): Н = (Z2 – Z1) + (p2 – p1)/qg + (v22 – v12)/2g.

    Если верить этой формуле, то напорные возможности насоса состоят из суммарной величины манометрического напора + разность квадратов скоростей потока жидкости во всасывающем и напорном патрубках агрегата.

    Проектировщики насосов рассчитывают величину напора будущего агрегата по формуле:

    Н = Нг.в. + Нг.н. + hп.в. + hп.н ., где уже Нг.в и Нг.н – геометрические высоты соответственных патрубков – всасывания и нагнетания, а hп.в. и hп.н – потери напора в соответствующих трубопроводах – всасывающем и напорном (нагнетающем).

    Отсюда видно, что напор, который может развить насос равняется суммарной величине геометрических высот всасывающего и нагнетающего патрубков + суммарное значение потерь напора жидкости при ее движении от приемного резервуара (емкости) до места вытекания струи из нагнетательной магистральной трубы.

    Практическое использование возможности насоса по созданию определенной величины давления, напора

    На практике, когда мы выбираем насос, то сразу обращаем внимание, на какую высоту он может поднять столб воды определенного давления, чтобы примерно знать, сможет агрегат доставить воду к расходным кранам на втором (примерно) этаже вашего автономного дома. Или как справится насос с поднятием воды со скважины глубиной в 100 метров.

    Мы уже все давно видели такие графики в инструкциях по эксплуатации того или иного насоса и не хотели понять, что на них изображен процесс изменения напора насоса в зависимости, например, от производительности.

    Оказывается, чем больше воды насос выдает в нагнетающий патрубок, тем будет меньше величина напора струи воды при открытых кранах расхода. Напор можно измерить на выходе из насоса, а с увеличением высоты подачи воды (а так же при увеличении длины горизонтальных участков), напор от насоса будет пропорционально уменьшаться на определенную величину.

    Если и без особых вычислений, параметры насоса по возможности создать определенное давление на выходе (напор в метрах высоты подачи воды) не совпадают с вашими желаниями, а по иному магистраль никак не провести в вашем конкретном случае, попробуйте применить промежуточные насосы повышения давления в водной магистрали или покупайте несколько насосов разного предназначения, которые в суммарной работе помогут обеспечить ваш дом и все хозяйство живительной влагой.

  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Remontpodomy.ru
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: